1
|
Baeza-Kallee N, Bergès R, Hein V, Cabaret S, Garcia J, Gros A, Tabouret E, Tchoghandjian A, Colin C, Figarella-Branger D. Deciphering the Action of Neuraminidase in Glioblastoma Models. Int J Mol Sci 2023; 24:11645. [PMID: 37511403 PMCID: PMC10380381 DOI: 10.3390/ijms241411645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) contains cancer stem cells (CSC) that are resistant to treatment. GBM CSC expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity and tumorigenesis of GBM CSC. Our aim was to characterize the resulting effects of neuraminidase that removes A2B5 in order to target GBM CSC. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3 and GBM CSC lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM CSC lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM CSC lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Victoria Hein
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Stéphanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, InstitutAgro, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jeremy Garcia
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Abigaëlle Gros
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Emeline Tabouret
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service de Neurooncologie, 13005 Marseille, France
| | | | - Carole Colin
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | |
Collapse
|
2
|
Maimó-Barceló A, Martín-Saiz L, Fernández JA, Pérez-Romero K, Garfias-Arjona S, Lara-Almúnia M, Piérola-Lopetegui J, Bestard-Escalas J, Barceló-Coblijn G. Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype. Int J Mol Sci 2022; 23:ijms23062949. [PMID: 35328369 PMCID: PMC8949316 DOI: 10.3390/ijms23062949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - Karim Pérez-Romero
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Santiago Garfias-Arjona
- Quirónsalud Medical Center, 07300 Inca, Spain;
- Son Verí Quirónsalud Hospital, Balearic Islands, 07609 Son Veri Nou, Spain
- Hospital de Llevant, 07680 Porto Cristo, Spain
| | - Mónica Lara-Almúnia
- Department of Neurosurgery, Jimenez Diaz Foundation University Hospital, Reyes Catolicos Av., No 2, 28040 Madrid, Spain;
- Ruber International Hospital, Maso St., No 38, 28034 Madrid, Spain
| | - Javier Piérola-Lopetegui
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Correspondence: (J.B.-E.); (G.B.-C.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
- Correspondence: (J.B.-E.); (G.B.-C.)
| |
Collapse
|
3
|
Wildburger NC, Wood PL, Gumin J, Lichti CF, Emmett MR, Lang FF, Nilsson CL. ESI-MS/MS and MALDI-IMS Localization Reveal Alterations in Phosphatidic Acid, Diacylglycerol, and DHA in Glioma Stem Cell Xenografts. J Proteome Res 2015; 14:2511-9. [PMID: 25880480 DOI: 10.1021/acs.jproteome.5b00076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is the most common adult primary brain tumor. Despite aggressive multimodal therapy, the survival of patients with GBM remains dismal. However, recent evidence has demonstrated the promise of bone marrow-derived mesenchymal stem cells (BM-hMSCs) as a therapeutic delivery vehicle for anti-glioma agents due to their ability to migrate or home to human gliomas. While several studies have demonstrated the feasibility of harnessing the homing capacity of BM-hMSCs for targeted delivery of cancer therapeutics, it is now also evident, based on clinically relevant glioma stem cell (GSC) models of GBMs, that BM-hMSCs demonstrate variable tropism toward these tumors. In this study, we compared the lipid environment of GSC xenografts that attract BM-hMSCs (N = 9) with those that do not attract (N = 9) to identify lipid modalities that are conducive to homing of BM-hMSC to GBMs. We identified lipids directly from tissue by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) of lipid extracts. Several species of signaling lipids, including phosphatidic acid (PA 36:2, PA 40:5, PA 42:5, and PA 42:7) and diacylglycerol (DAG 34:0, DAG 34:1, DAG 36:1, DAG 38:4, DAG 38:6, and DAG 40:6), were lower in attracting xenografts. Molecular lipid images showed that PA (36:2), DAG (40:6), and docosahexaenoic acid (DHA) were decreased within tumor regions of attracting xenografts. Our results provide the first evidence for lipid signaling pathways and lipid-mediated tumor inflammatory responses in the homing of BM-hMSCs to GSC xenografts. Our studies provide new fundamental knowledge on the molecular correlates of the differential homing capacity of BM-hMSCs toward GSC xenografts.
Collapse
Affiliation(s)
| | - Paul L Wood
- ∥Department of Physiology and Pharmacology, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, Tennessee 37752, United States
| | | | - Cheryl F Lichti
- §UTMB Cancer Center, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1074, United States
| | - Mark R Emmett
- §UTMB Cancer Center, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1074, United States
| | | | - Carol L Nilsson
- §UTMB Cancer Center, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1074, United States
| |
Collapse
|
4
|
Integrative biological analysis for neuropsychopharmacology. Neuropsychopharmacology 2014; 39:5-23. [PMID: 23800968 PMCID: PMC3857644 DOI: 10.1038/npp.2013.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/24/2023]
Abstract
Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.
Collapse
|
5
|
Lin J, Yu Y, Shigdar S, Fang DZ, Du JR, Wei MQ, Danks A, Liu K, Duan W. Enhanced antitumor efficacy and reduced systemic toxicity of sulfatide-containing nanoliposomal doxorubicin in a xenograft model of colorectal cancer. PLoS One 2012; 7:e49277. [PMID: 23145140 PMCID: PMC3492268 DOI: 10.1371/journal.pone.0049277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
Sulfatide is a glycosphingolipid known to interact with several extracellular matrix proteins, such as tenascin-C which is overexpressed in many types of cancer including that of the colon. In view of the limited success of chemotherapy in colorectal cancer and high toxicity of doxorubicin (DOX), a sulfatide-containing liposome (SCL) encapsulation approach was taken to overcome these barriers. This study assessed the in vitro cytotoxicity, biodistribution, therapeutic efficacy and systemic toxicity in vivo of sulfatide-containing liposomal doxorubicin (SCL-DOX) using human colonic adenocarcinoma HT-29 xenograft as the experimental model. In vitro, SCL-DOX was shown to be delivered into the nuclei and displayed prolonged retention compared with the free DOX. The use of this nanodrug delivery system to deliver DOX for treatment of tumor-bearing mice produced a much improved therapeutic efficacy in terms of tumor growth suppression and extended survival in contrast to the free drug. Furthermore, treatment of tumor-bearing mice with SCL-DOX resulted in a lower DOX uptake in the principal sites of toxicity of the free drug, namely the heart and skin, as well as reduced myelosuppression and diminished cardiotoxicity. Such natural lipid-guided nanodrug delivery systems may represent a new strategy for the development of effective anticancer chemotherapeutics targeting the tumor microenvironment for both primary tumor and micrometastases.
Collapse
Affiliation(s)
- Jia Lin
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yan Yu
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sarah Shigdar
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Jun Rong Du
- Department of Pharmacology and Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of China
| | - Ming Q. Wei
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, Australia
| | - Andrew Danks
- Department of Neurosurgery, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Ke Liu
- Faculty of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Affiliation(s)
- Feng Xian
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
| | - Christopher L. Hendrickson
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Alan G. Marshall
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
7
|
Heffernan-Stroud LA, Obeid LM. p53 and regulation of bioactive sphingolipids. ACTA ACUST UNITED AC 2010; 51:219-28. [PMID: 21035490 DOI: 10.1016/j.advenzreg.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 12/19/2022]
Abstract
Both the sphingolipid and p53 pathways are important regulators- and apparent collaborators-of cell-fate decisions. Whereas some investigations have suggested that ceramide and more complex sphingolipids function upstream of p53 or in a p53-independent manner, other studies propose that p53-dependent alterations in these sphingolipids can also contribute to apoptosis. Further studies focusing on sphingolipid metabolizing enzymes have revealed that they function similarly both upstream and downstream of p53 activation. However, whereas various components of the sphingolipid and p53 pathways may simultaneously function to elicit apoptosis and/or growth inhibition, SMase and SK1 may undergo explicit regulation by p53 that could contribute to ceramide-induced senescence in cells. Thus, we propose that regulation of bioactive sphingolipid signaling molecules could be of therapeutic benefit in the treatment of p53-dependent cancers.
Collapse
|
8
|
Overexpression of ST6GalNAcV, a ganglioside-specific alpha2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci U S A 2010; 107:12646-51. [PMID: 20616019 DOI: 10.1073/pnas.0909862107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant cell-surface glycosylation patterns are present on virtually all tumors and have been linked to tumor progression, metastasis, and invasivity. We have shown that expressing a normally quiescent, glycoprotein-specific alpha2,6-sialyltransferase (ST6Gal1) gene in gliomas inhibited invasivity in vitro and tumor formation in vivo. To identify other glycogene targets with therapeutic potential, we created a focused 45-mer oligonucleotide microarray platform representing all of the cloned human glycotranscriptome and examined the glycogene expression profiles of 10 normal human brain specimens, 10 malignant gliomas, and 7 human glioma cell lines. Among the many significant changes in glycogene expression observed, of particular interest was the observation that an additional alpha2,6-sialyltransferase, ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha2,6-sialyltransferase 5 (ST6GalNAcV), was expressed at very low levels in all glioma and glioma cell lines examined compared with normal brain. ST6GalNAcV catalyzes the formation of the terminal alpha2,6-sialic acid linkages on gangliosides. Stable transfection of ST6GalNAcV into U373MG glioma cells produced (i) no change in alpha2,6-linked sialic acid-containing glycoproteins, (ii) increased expression of GM2alpha and GM3 gangliosides and decreased expression of GM1b, Gb3, and Gb4, (iii) marked inhibition of in vitro invasivity, (iv) modified cellular adhesion to fibronectin and laminin, (v) increased adhesion-mediated protein tyrosine phosphorylation of HSPA8, and (vi) inhibition of tumor growth in vivo. These results strongly suggest that modulation of the synthesis of specific glioma cell-surface glycosphingolipids alters invasivity in a manner that may have significant therapeutic potential.
Collapse
|
9
|
Blanksby SJ, Mitchell TW. Advances in mass spectrometry for lipidomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:433-65. [PMID: 20636050 DOI: 10.1146/annurev.anchem.111808.073705] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent expansion in research in the field of lipidomics has been driven by the development of new mass spectrometric tools and protocols for the identification and quantification of molecular lipids in complex matrices. Although there are similarities between the field of lipidomics and the allied field of mass spectrometry (e.g., proteomics), lipids present some unique advantages and challenges for mass spectrometric analysis. The application of electrospray ionization to crude lipid extracts without prior fractionation-the so-called shotgun approach-is one such example, as it has perhaps been more successfully applied in lipidomics than in any other discipline. Conversely, the diverse molecular structure of lipids means that collision-induced dissociation alone may be limited in providing unique descriptions of complex lipid structures, and the development of additional, complementary tools for ion activation and analysis is required to overcome these challenges. In this article, we discuss the state of the art in lipid mass spectrometry and highlight several areas in which current approaches are deficient and further innovation is required.
Collapse
|