1
|
Ballard CJ, Paserba MR, Paul Daniel EJ, Hurtado-Guerrero R, Gerken TA. Polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) isozyme surface charge governs charge substrate preferences to modulate mucin type O-glycosylation. Glycobiology 2023; 33:817-836. [PMID: 37555669 PMCID: PMC10629720 DOI: 10.1093/glycob/cwad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
A large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) initiate mucin type O-glycosylation transferring α-GalNAc from a UDP-GalNAc donor to the hydroxyl groups of Ser and Thr residues of peptides and proteins, thereby defining sites of O-glycosylation. Mutations and differential expression of several GalNAc-Ts are associated with many disease states including cancers. The mechanisms by which these isozymes choose their targets and their roles in disease are not fully understood. We previously showed that the GalNAc-Ts possess common and unique specificities for acceptor type, peptide sequence and prior neighboring, and/or remote substrate GalNAc glycosylation. In the present study, the role of flanking charged residues was investigated using a library of charged peptide substrates containing the central -YAVTPGP- acceptor sequence. Eleven human and one bird GalNAc-T were initially characterized revealing a range of preferences for net positive, net negative, or unique combinations of flanking N- and/or C-terminal charge, correlating to each isozyme's different electrostatic surface potential. It was further found that isoforms with high sequence identity (>70%) within a subfamily can possess vastly different charge specificities. Enzyme kinetics, activities obtained at elevated ionic strength, and molecular dynamics simulations confirm that the GalNAc-Ts differently recognize substrate charge outside the common +/-3 residue binding site. These electrostatic interactions impact how charged peptide substrates bind/orient on the transferase surface, thus modulating their activities. In summary, we show the GalNAc-Ts utilize more extended surfaces than initially thought for binding substrates based on electrostatic, and likely other hydrophobic/hydrophilic interactions, furthering our understanding of how these transferases select their target.
Collapse
Affiliation(s)
- Collin J Ballard
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Miya R Paserba
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Ramón Hurtado-Guerrero
- Department of Biomedical Engineering, The Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Fundación ARAID, Zaragoza 50018, Spain
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-Associated Phenotypes in Mammals. Molecules 2021; 26:5504. [PMID: 34576978 PMCID: PMC8472655 DOI: 10.3390/molecules26185504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mucin-type O-glycosylation involves the attachment of glycans to an initial O-linked N-acetylgalactosamine (GalNAc) on serine and threonine residues on proteins. This process in mammals is initiated and regulated by a large family of 20 UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) (EC 2.4.1.41). The enzymes are encoded by a large gene family (GALNTs). Two of these genes, GALNT2 and GALNT3, are known as monogenic autosomal recessive inherited disease genes with well characterized phenotypes, whereas a broad spectrum of phenotypes is associated with the remaining 18 genes. Until recently, the overlapping functionality of the 20 members of the enzyme family has hindered characterizing the specific biological roles of individual enzymes. However, recent evidence suggests that these enzymes do not have full functional redundancy and may serve specific purposes that are found in the different phenotypes described. Here, we summarize the current knowledge of GALNT and associated phenotypes.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
3
|
Narimatsu Y, Joshi HJ, Schjoldager KT, Hintze J, Halim A, Steentoft C, Nason R, Mandel U, Bennett EP, Clausen H, Vakhrushev SY. Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Mol Cell Proteomics 2019; 18:1396-1409. [PMID: 31040225 PMCID: PMC6601209 DOI: 10.1074/mcp.ra118.001121] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Hiren J Joshi
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - John Hintze
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
4
|
Valoskova K, Biebl J, Roblek M, Emtenani S, Gyoergy A, Misova M, Ratheesh A, Reis-Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife 2019; 8:e41801. [PMID: 30910009 PMCID: PMC6435326 DOI: 10.7554/elife.41801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva's vertebrate ortholog, MFSD1, rescues the minerva mutant's migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.
Collapse
Affiliation(s)
| | - Julia Biebl
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marko Roblek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Shamsi Emtenani
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Attila Gyoergy
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michaela Misova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Aparna Ratheesh
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUnited Kingdom
| | | | | | - Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daria E Siekhaus
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
5
|
Hintze J, Ye Z, Narimatsu Y, Madsen TD, Joshi HJ, Goth CK, Linstedt A, Bachert C, Mandel U, Bennett EP, Vakhrushev SY, Schjoldager KT. Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. J Biol Chem 2018; 293:19064-19077. [PMID: 30327431 PMCID: PMC6295722 DOI: 10.1074/jbc.ra118.004516] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The GalNAc-type O-glycoproteome is orchestrated by a large family of polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with partially overlapping contributions to the O-glycoproteome besides distinct nonredundant functions. Increasing evidence indicates that individual GalNAc-Ts co-regulate and fine-tune specific protein functions in health and disease, and deficiencies in individual GALNT genes underlie congenital diseases with distinct phenotypes. Studies of GalNAc-T specificities have mainly been performed with in vitro enzyme assays using short peptide substrates, but recently quantitative differential O-glycoproteomics of isogenic cells with and without GALNT genes has enabled a more unbiased exploration of the nonredundant contributions of individual GalNAc-Ts. Both approaches suggest that fairly small subsets of O-glycosites are nonredundantly regulated by specific GalNAc-Ts, but how these isoenzymes orchestrate regulation among competing redundant substrates is unclear. To explore this, here we developed isogenic cell model systems with Tet-On inducible expression of two GalNAc-T genes, GALNT2 and GALNT11, in a knockout background in HEK293 cells. Using quantitative O-glycoproteomics with tandem-mass-tag (TMT) labeling, we found that isoform-specific glycosites are glycosylated in a dose-dependent manner and that induction of GalNAc-T2 or -T11 produces discrete glycosylation effects without affecting the major part of the O-glycoproteome. These results support previous findings indicating that individual GalNAc-T isoenzymes can serve in fine-tuned regulation of distinct protein functions.
Collapse
Affiliation(s)
- John Hintze
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Zilu Ye
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Thomas Daugbjerg Madsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Christoffer K Goth
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Adam Linstedt
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Collin Bachert
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ulla Mandel
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Eric P Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Katrine T Schjoldager
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| |
Collapse
|
6
|
Wang S, Mao Y, Narimatsu Y, Ye Z, Tian W, Goth CK, Lira-Navarrete E, Pedersen NB, Benito-Vicente A, Martin C, Uribe KB, Hurtado-Guerrero R, Christoffersen C, Seidah NG, Nielsen R, Christensen EI, Hansen L, Bennett EP, Vakhrushev SY, Schjoldager KT, Clausen H. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J Biol Chem 2018; 293:7408-7422. [PMID: 29559555 DOI: 10.1074/jbc.m117.817981] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/27/2018] [Indexed: 11/06/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O-glycan sites. Moreover, we found that O-glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O-glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O-glycosylation of LDLR-related proteins and identified conserved O-glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O-glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O-glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease.
Collapse
Affiliation(s)
- Shengjun Wang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Yang Mao
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Nis B Pedersen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Asier Benito-Vicente
- Biofisika Institute, Centro Superior de Investigaciones Cientificas (CSIC), Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Departamento de Bioquimica, Universidad del Pais Vasco, 48080 Bilbao, Spain
| | - Cesar Martin
- Biofisika Institute, Centro Superior de Investigaciones Cientificas (CSIC), Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Departamento de Bioquimica, Universidad del Pais Vasco, 48080 Bilbao, Spain
| | - Kepa B Uribe
- Biofisika Institute, Centro Superior de Investigaciones Cientificas (CSIC), Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Departamento de Bioquimica, Universidad del Pais Vasco, 48080 Bilbao, Spain
| | - Ramon Hurtado-Guerrero
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-Instituto de Química Física Rocasolano (IQFR), CSIC Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, 50009 Zaragoza, Spain
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet and Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Nabil G Seidah
- Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease--mucin-type O-glycans in cancer. Adv Cancer Res 2015; 126:53-135. [PMID: 25727146 DOI: 10.1016/bs.acr.2014.11.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mucin-type O-glycans are a class of glycans initiated with N-acetylgalactosamine (GalNAc) α-linked primarily to Ser/Thr residues within glycoproteins and often extended or branched by sugars or saccharides. Most secretory and membrane-bound proteins receive this modification, which is important in regulating many biological processes. Alterations in mucin-type O-glycans have been described across tumor types and include expression of relatively small-sized, truncated O-glycans and altered terminal structures, both of which are associated with patient prognosis. New discoveries in the identity and expression of tumor-associated O-glycans are providing new avenues for tumor detection and treatment. This chapter describes mucin-type O-glycan biosynthesis, altered mucin-type O-glycans in primary tumors, including mechanisms for structural changes and contributions to the tumor phenotype, and clinical approaches to detect and target altered O-glycans for cancer treatment and management.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Pedersen NB, Wang S, Narimatsu Y, Yang Z, Halim A, Schjoldager KTBG, Madsen TD, Seidah NG, Bennett EP, Levery SB, Clausen H. Low density lipoprotein receptor class A repeats are O-glycosylated in linker regions. J Biol Chem 2014; 289:17312-24. [PMID: 24798328 DOI: 10.1074/jbc.m113.545053] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis and deficiency in LDLR functions cause hypercholesterolemia. LDLR is a type I transmembrane protein that requires O-glycosylation for stable expression at the cell surface. It has previously been suggested that LDLR O-glycosylation is found N-terminal to the juxtamembrane region. Recently we identified O-glycosylation sites in the linker regions between the characteristic LDLR class A repeats in several LDLR-related receptors using the "SimpleCell" O-glycoproteome shotgun strategy. Herein, we have systematically characterized O-glycosylation sites on recombinant LDLR shed from HEK293 SimpleCells and CHO wild-type cells. We find that the short linker regions between LDLR class A repeats contain an evolutionarily conserved O-glycosylation site at position -1 of the first cysteine residue of most repeats, which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide GalNAc transferases. Probing into which isoform(s) contributed to glycosylation of the linker regions of the LDLR class A repeats by in vitro enzyme assays suggested a major role of GalNAc-T11. This was supported by expression of LDLR in HEK293 cells, where knock-out of the GalNAc-T11 isoform resulted in the loss of glycosylation of three of four linker regions.
Collapse
Affiliation(s)
- Nis Borbye Pedersen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Shengjun Wang
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Adnan Halim
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Katrine Ter-Borch Gram Schjoldager
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Thomas Daugbjerg Madsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Nabil G Seidah
- the Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Eric Paul Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Steven B Levery
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| |
Collapse
|
9
|
Schjoldager KTBG, Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:2079-94. [PMID: 23022508 DOI: 10.1016/j.bbagen.2012.09.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively. SCOPE OF REVIEW Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease. MAJOR CONCLUSIONS Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events. GENERAL SIGNIFICANCE Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.
Collapse
|
10
|
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22:736-56. [PMID: 22183981 PMCID: PMC3409716 DOI: 10.1093/glycob/cwr182] [Citation(s) in RCA: 612] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
Collapse
Affiliation(s)
- Eric P Bennett
- Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
11
|
Gill DJ, Clausen H, Bard F. Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 2011; 21:149-58. [PMID: 21145746 DOI: 10.1016/j.tcb.2010.11.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 01/04/2023]
Abstract
O-GalNAc glycosylation of proteins confers essential structural, protective and signaling roles in eumetazoans. Addition of O-glycans onto proteins is an extremely complex process that regulates both sites of attachment and the types of oligosaccharides added. Twenty distinct polypeptide GalNAc-transferases (GalNAc-Ts) initiate O-glycosylation and fine-tuning their expression provides a mechanism for regulating this action. Recently, a new mode of regulation has emerged where activation of Src kinase selectively redistributes Golgi-localized GalNAc-Ts to the ER. This relocalization results in a strong increase in the density of O-glycan decoration. In this review, we discuss how different mechanisms can regulate the number and the types of O-glycans decorating proteins. In addition, we speculate how Src-dependent relocation of GalNAc-Ts could play an important role in cancerous cellular transformation.
Collapse
Affiliation(s)
- David J Gill
- Institute of Molecular and Cell Biology (IMCB), Proteos, 61 Biopolis Drive, Singapore, 138673
| | | | | |
Collapse
|
12
|
Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, Markowitz SD, Shen W, Patel H, Tabak LA. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem 2011; 286:14493-507. [PMID: 21349845 DOI: 10.1074/jbc.m111.218701] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mucin-type O-glycosylation is initiated by a large family of ∼20 UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer α-GalNAc from UDP-GalNAc to Ser and Thr residues of polypeptide acceptors. Characterizing the peptide substrate specificity of each isoform is critical to understanding their properties, biological roles, and significance. Presently, only the specificities of ppGalNAc T1, T2, and T10 and the fly orthologues of T1 and T2 have been systematically characterized utilizing random peptide substrates. We now extend these studies to ppGalNAc T3, T5, and T12, transferases variously associated with human disease. Our results reveal several common features; the most striking is the similar pattern of enhancements for the three residues C-terminal to the site of glycosylation for those transferases that contain a common conserved Trp. In contrast, residues N-terminal to the site of glycosylation show a wide range of isoform-specific enhancements, with elevated preferences for Pro, Val, and Tyr being the most common at the -1 position. Further analysis reveals that the ratio of positive (Arg, Lys, and His) to negative (Asp and Glu) charged residue enhancements varied among transferases, thus further modulating substrate preference in an isoform-specific manner. By utilizing the obtained transferase-specific preferences, the glycosylation patterns of the ppGalNAc Ts against a series of peptide substrates could roughly be reproduced, demonstrating the potential for predicting isoform-specific glycosylation. We conclude that each ppGalNAc T isoform may be uniquely sensitive to peptide sequence and overall charge, which together dictates the substrate sites that will be glycosylated.
Collapse
Affiliation(s)
- Thomas A Gerken
- Department of Pediatrics (W. A. Bernbaum Center for Cystic Fibrosis Research), Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|