1
|
Xin M, Li C, You S, Zhu B, Shen J, Dong W, Xue X, Shi W, Xiong Y, Shi J, Sun S. Site-specific N-glycoproteomic analysis reveals up-regulated fucosylation in seminal plasma of asthenozoospermia. Glycobiology 2024; 34:cwae054. [PMID: 39073901 DOI: 10.1093/glycob/cwae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
N-linked glycoproteins are rich in seminal plasma, playing essential roles in supporting sperm function and fertilization process. The alteration of seminal plasma glycans and its correspond glycoproteins may lead to sperm dysfunction and even infertility. In present study, an integrative analysis of glycoproteomic and proteomic was performed to investigate the changes of site-specific glycans and glycoptoteins in seminal plasma of asthenozoospermia. By large scale profiling and quantifying 5,018 intact N-glycopeptides in seminal plasma, we identified 92 intact N-glycopeptides from 34 glycoproteins changed in asthenozoospermia. Especially, fucosylated glycans containing lewis x, lewis y and core fucosylation were significantly up-regulated in asthenozoospermia compared to healthy donors. The up-regulation of fucosylated glycans in seminal plasma may interfere sperm surface compositions and regulation of immune response, which subsequently disrupts sperm function. Three differentiated expression of seminal vesicle-specific glycoproteins (fibronectin, seminogelin-2, and glycodelin) were also detected with fucosylation alteration in seminal plasma of asthenozoospermia. The interpretation of the altered site-specific glycan structures provides data for the diagnosis and etiology analysis of male infertility, as well as providing new insights into the potential therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Miaomiao Xin
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Cheng Li
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shanshan You
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Bojing Zhu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiechen Shen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Wenbo Dong
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Xia Xue
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Wenhao Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Yao Xiong
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Juanzi Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
2
|
Sołkiewicz K, Krotkiewski H, Jędryka M, Czekański A, Kratz EM. The Alterations of Serum IgG Fucosylation as a Potential Additional New Diagnostic Marker in Advanced Endometriosis. J Inflamm Res 2022; 15:251-266. [PMID: 35058701 PMCID: PMC8764169 DOI: 10.2147/jir.s341906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endometriosis is an inflammatory disease leading to the growth of endometrial-like tissue outside of the uterus, which affects approximately 10% of young women of reproductive potential. The diagnosis of this disease is difficult, often invasive and time-consuming, therefore non-invasive diagnostic methods are strongly desirable in endometriosis detection. The aim of our project was to investigate whether any associations exist between the expression of serum IgG fucosylation and advanced stages of endometriosis. We were also interested in whether native serum IgG (s-IgG) fucosylation analysis, without prior IgG isolation, could provide a panel of parameters helpful in non-invasive diagnostics of advanced endometriosis. METHODS IgG fucosylation was examined using a lectin-ELISA test with fucose-specific lectins: AAL and LCA, specific for core fucose α1,6-linked, as well as LTA and UEA which recognize α1,3- and α1,2-linked fucose, respectively. RESULTS ROC curve and cluster analysis showed s-IgG reactivities with the panel of fucose-specific lectins AAL, LCA and LTA. CONCLUSION s-IgG reactivity with the panel of fucose-specific lectins AAL, LCA and LTA can be taken into account as a useful diagnostic and clinical tool to differentiate women with advanced endometriosis. Moreover, it has been shown that the analysis of native IgG fucosylation directly in serum, without prior time-consuming, expensive IgG isolation, is sufficient to distinguish advanced stages of endometriosis from a control group of healthy women.
Collapse
Affiliation(s)
- Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| | - Hubert Krotkiewski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, 53-114, Poland
| | - Marcin Jędryka
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Wroclaw, 53-413, Poland
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Wroclaw, 53-413, Poland
| | - Andrzej Czekański
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Wroclaw, 53-413, Poland
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Wroclaw, 53-413, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| |
Collapse
|
3
|
Lan R, Xin M, Hao Z, You S, Xu Y, Wu J, Dang L, Zhang X, Sun S. Biological Functions and Large-Scale Profiling of Protein Glycosylation in Human Semen. J Proteome Res 2020; 19:3877-3889. [DOI: 10.1021/acs.jproteome.9b00795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rongxia Lan
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Miaomiao Xin
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany 38925, Czech Republic
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Shanshan You
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Xinwen Zhang
- The Medical Genetics Centre, Xi 'an People's Hospital (Xi 'an Fourth Hospital), Xi’an Obstetrics and Gynecology Hospital, Xi’an, Shaanxi Province 710004, P. R. China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| |
Collapse
|
4
|
Janiszewska E, Kratz EM. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Mol Reprod Dev 2020; 87:515-524. [PMID: 32222009 DOI: 10.1002/mrd.23340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 11/06/2022]
Abstract
Male infertility is becoming a rapidly growing problem around the world, mainly in the highly developed countries. Seminal proteome composition seems to be one of the crucial factors of the proper course of fertilization - clusterin (CLU) is among the most important ones. CLU, as one of the crucial seminal plasma glycoproteins, plays a very important role in sperm capacitation and immune tolerance in the female reproductive tract. CLU is also known as a sensitive marker of oxidative stress. It has six n-glycosylation sites and also exhibits chaperone activity. An analysis of changes in the profile and degree of CLU glycosylation may shed some new light on the molecular mechanisms of the fertilization process and may be used as an additional diagnostic marker of male fertility. This study constitutes a review of the recently available literature concerning human seminal CLU, including changes in its glycosylation, analyzed in the context of human reproduction.
Collapse
Affiliation(s)
- Ewa Janiszewska
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw, Poland
| |
Collapse
|
5
|
Ka U A A, Ferens-Sieczkowska MA, Olejnik B, Ko Odziejczyk J, Zimmer M, Kratz EM. The content of immunomodulatory glycoepitopes in seminal plasma glycoproteins of fertile and infertile men. Reprod Fertil Dev 2019; 31:579-589. [PMID: 30380399 DOI: 10.1071/rd18124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
According to a concept of fetoembryonic defence, protein-carbohydrate interaction may be involved in the regulation of maternal immunity that prevents rejection of allograft spermatozoa, embryo and fetus. In the present study we focussed on the evaluation of the expression of glycoepitopes that may be of crucial importance in this process: LewisY (LeY) and LewisX (LeX) as well as terminal sialylation. Polyacrylamide gel electrophoresis with sodium dodecyl sulphate was used to separate seminal plasma samples of fertile (n=10) and infertile (n=103) men; these were then probed with lectins specific to fucose (Lotus tetragonolobus agglutinin and Ulex europaeus agglutinin) and sialic acid (Sambucus nigra agglutinin and Maackia amurensis agglutinin). Differential expression of α2,3-bound sialic acid was found in six out of seven analysed bands, whereas differences in the other analysed glycoepitopes were found in fewer numbers of bands. Mass spectrometry analysis focussed on the identification of proteins carrying glycans with immunomodulatory epitopes, including fibronectin, lactoferrin, clusterin, zinc-α2-glycoprotein, prostate acid phosphatase and prostate-specific antigen; these should be submitted to further detailed analysis.
Collapse
Affiliation(s)
- Anna Ka U A
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Miros Awa Ferens-Sieczkowska
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Beata Olejnik
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Justyna Ko Odziejczyk
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Mariusz Zimmer
- 2nd Department and Clinic of Gynaecology and Obstetrics, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| |
Collapse
|
6
|
Arend P. ABO phenotype-protected reproduction based on human specific α1,2 L-fucosylation as explained by the Bombay type formation. Immunobiology 2018; 223:684-693. [PMID: 30075871 DOI: 10.1016/j.imbio.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The metabolic relationship between the formation of the ABO(H) blood group phenotype and human fertility is evident in the case of the (Oh) or Bombay blood type, which Charles Darwin would have interpreted as resulting from reduced male fertility in consanguinities, based on the history of his own family, the Darwin/Wedgwood Dynasty. The classic Bombay type occurs with the extremely rare, human-specific genotype (h/h; se/se), which (due to point mutations) does not encode fucosyltransferases 1(FUT1) and 2 (FUT2). These enzymes are the basis for ABO(H) phenotype formation on the cell surfaces and fucosylation of plasma proteins, involving neonatal immunoglobulin M (IgM). In the normal human blood group O(H), which is not protected by clonal selection with regard to environmental A/B immunization, the plasma contains a mixture of non-immune and adaptive anti-A/B reactive isoagglutinins, which in the O(h) Bombay type show extremely elevated levels, associated with decreased levels of fucosylation-dependent functional plasma proteins, suchs as the van Willebrand factor (vWF) and clotting factor VIII. In fact, while the involvement of adaptive immunoglobulins remains unknown, poor fucosylation may explain the polyreactivity in the Bombay type plasma, which exhibits pronounced complement-binding cross-reactive anti-A/Tn and anti-B IgM levels, with additional anti-H reactivity, acting over a wide range of temperatures, with an amplitude at 37 °C. This aggressive anti-glycan-reactive IgM molecule suggests the induction of ADCC (antibody-dependent) and/or complement-mediated cytotoxicity via overexpressed glycosidic bond sites against the embryogenic stem cell-to-germ cell transformation, which is characterized by fleeting appearances of A-like, developmental trans-species GalNAcα1-O-Ser/Thr-R glycan, also referred to as the Tn (T "nouvelle") antigen.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355, Marburg, Lahn, Germany; Gastroenterology Research Laboratory, University of Iowa, College of Medicine, Iowa City, IA, USA; Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany.
| |
Collapse
|
7
|
Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018; 333:65-79. [DOI: 10.1016/j.cellimm.2018.07.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
|
8
|
Kałuża A, Jarząb A, Gamian A, Kratz EM, Zimmer M, Ferens-Sieczkowska M. Preliminary MALDI-TOF-MS analysis of seminal plasma N-glycome of infertile men. Carbohydr Res 2016; 435:19-25. [PMID: 27690320 DOI: 10.1016/j.carres.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022]
Abstract
Glycosylation pattern within reproductive tract is now suggested to be involved in providing female immune tolerance for allograft sperm and developing embryo, but the information whether impaired glycosylation may influence male fertility potential is still limited. We have analyzed seminal plasma N-glycome in pooled samples derived from fertile and infertile men by means of MALDI-TOF/TOF tandem mass spectrometry. Among infertile subjects, normozoospermic, oligozoospermic, asthenozoospermic and oligoasthenozoospermic samples were obtained. Eighty-six oligosaccharides were identified in all the analyzed samples. Differences in the content of unique glycans: high mannose and hybrid type, lacking terminal sialic acid and highly fucosylated were found when samples derived from infertile subjects with different semen patterns were compared to the fertile control. The content of highly branched glycans was 3-fold elevated in normozoospermic infertile men, while the expression of highly fucosylated oligosaccharides was increased in asthenozoospermic, oligozoospermic and oligoasthenozoospermic samples. Sialylation of oligosaccharides was decreased in oligozoospermic, oligoasthenozoospermic and especially asthenozoospermic samples, but increased in infertile normozoospermic subjects. Altered glycosylation observed in seminal plasma may reflect similar changes in sperm surface glycoproteins, and may disturb sperm interaction with female immune system. We suggest that at least some cases of unexplained male infertility may be associated with impaired glycosylation.
Collapse
Affiliation(s)
- Anna Kałuża
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44A, 50-345 Wrocław, Poland
| | - Anna Jarząb
- Department of Immunology of Infectious Diseases, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Andrzej Gamian
- Department of Clinical Biochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland; Department of Immunology of Infectious Diseases, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Ewa M Kratz
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44A, 50-345 Wrocław, Poland
| | - Mariusz Zimmer
- 2nd Department and Clinic of Gynecology and Obstetrics, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | | |
Collapse
|
9
|
Calderon AD, Liu Y, Li X, Wang X, Chen X, Li L, Wang PG. Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans. Org Biomol Chem 2016; 14:4027-31. [PMID: 27080952 PMCID: PMC4852481 DOI: 10.1039/c6ob00586a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate specificity studies of human FUT8 using 77 structurally-defined N-glycans as acceptors showed a strict requirement towards the α1,3-mannose branch, but a great promiscuity towards the α1,6-mannose branch. Accordingly, a chemoenzymatic strategy was developed for the efficient synthesis of core-fucosylated asymmetric N-glycans.
Collapse
Affiliation(s)
- Angie D Calderon
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and Chemily LLC, Atlanta, GA 30303, USA
| | - Xu Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Xuan Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Peng G Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
10
|
Olejnik B, Kratz EM, Zimmer M, Ferens-Sieczkowska M. Glycoprotein fucosylation is increased in seminal plasma of subfertile men. Asian J Androl 2015; 17:274-80. [PMID: 25248658 PMCID: PMC4650452 DOI: 10.4103/1008-682x.138187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitro by fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL). Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1-acid glycoprotein, α1-antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.
Collapse
|
11
|
Żurawska-Płaksej E, Kratz EM, Ferens-Sieczkowska M, Knapik-Kordecka M, Piwowar A. Changes in glycosylation of human blood plasma chitotriosidase in patients with type 2 diabetes. Glycoconj J 2015; 33:29-39. [DOI: 10.1007/s10719-015-9629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/03/2023]
|
12
|
Terminal Mannose Residues in Seminal Plasma Glycoproteins of Infertile Men Compared to Fertile Donors. Int J Mol Sci 2015; 16:14933-50. [PMID: 26147424 PMCID: PMC4519880 DOI: 10.3390/ijms160714933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/27/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022] Open
Abstract
The impact of seminal plasma components on the fertilization outcomes in humans is still under question. The increasing number of couples facing problems with conception raises the need for predictive biomarkers. Detailed understanding of the molecular mechanisms accompanying fertilization remains another challenge. Carbohydrate–protein recognition may be of key importance in this complex field. In this study, we analyzed the unique glycosylation pattern of seminal plasma proteins, the display of high-mannose and hybrid-type oligosaccharides, by means of their reactivity with mannose-specific Galanthus nivalis lectin. Normozoospermic infertile subjects presented decreased amounts of lectin-reactive glycoepitopes compared to fertile donors and infertile patients with abnormal semen parameters. Glycoproteins containing unveiled mannose were isolated in affinity chromatography, and 17 glycoproteins were identified in liquid chromatography-tandem mass spectrometry with electrospray ionization. The N-glycome of the isolated glycoproteins was examined in matrix-assisted laser desorption ionization mass spectrometry. Eleven out of 27 identified oligosaccharides expressed terminal mannose residues, responsible for lectin binding. We suggest that lowered content of high-mannose and hybrid type glycans in normozoospermic infertile patients may be associated with impaired sperm protection from preterm capacitation and should be considered in the search for new infertility markers.
Collapse
|
13
|
The analysis of sialylation, N-glycan branching, and expression of O-glycans in seminal plasma of infertile men. DISEASE MARKERS 2015; 2015:941871. [PMID: 25892842 PMCID: PMC4393897 DOI: 10.1155/2015/941871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/17/2015] [Indexed: 01/31/2023]
Abstract
Carbohydrates are known to mediate some events involved in successful fertilization. Although some studies on the glycosylation of seminal plasma proteins are available, the total glycan profile was rarely analyzed as a feature influencing fertilization potential. In this work we aimed to compare some glycosylation traits in seminal plasma glycoproteins of fertile and infertile men. The following findings emerge from our studies: (1) in human seminal plasma the presence and alterations of O-linked glycans were observed; (2) the expression of SNA-reactive sialic acid significantly differs between asthenozoospermia and both normozoospermic (fertile and infertile) groups; (3) the expression of PHA-L-reactive highly branched N-glycans was significantly lower in oligozoospermic patients than in both normozoospermic groups. Indication of the appropriate lectins that would enable the possibly precise determination of the glycan profile seems to be a good supplement to mass spectrum analysis. Extension of the lectin panel is useful for the further research.
Collapse
|
14
|
IgG-effector functions: "the good, the bad and the ugly". Immunol Lett 2014; 160:139-44. [PMID: 24495619 DOI: 10.1016/j.imlet.2014.01.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 01/06/2023]
Abstract
IgG-antibodies are potent and versatile mediators of host protection. They elicit their biological effects through specific interaction of the Fc-part with complement, specific cellular receptors, or both. Several factors should be taken into consideration when analyzing the nature and intensity of the immunological response elicited via IgG-effector functions, especially for the family of IgG-Fc receptors (FcγRs) exclusively expressed on immune cells. These include the various classes of leukocyte FcγR, expressed variably on different immune cells, each with distinct affinity for every IgG subclass, as well as genetic FcγR-polymorphisms affecting expression and affinity for IgG. Furthermore, various aspects of the IgG itself are also crucial for the outcome of the biological response. These include endogenously encoded IgG-polymorphisms, such as IgG3 polymorphisms, and post-transcriptional IgG-modifications, in particular IgG-Fc-glycosylation, affecting IgG effector functions through modified binding affinity to FcγR. These latter aspects concerning the variability in IgG3 on its half-life and placental transport and the clinical consequences of altered IgG-quality through glycosylation, will be the focus of this review.
Collapse
|