1
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
2
|
Carrard J, Gallart-Ayala H, Infanger D, Teav T, Wagner J, Knaier R, Colledge F, Streese L, Königstein K, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Metabolic View on Human Healthspan: A Lipidome-Wide Association Study. Metabolites 2021; 11:metabo11050287. [PMID: 33946321 PMCID: PMC8146132 DOI: 10.3390/metabo11050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years, 43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was investigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach. Compared to their younger counterparts, aged females and males exhibited significant higher levels in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphingolipid and glycerophospholipid species, previously described as cardiometabolically favourable, were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more favourable lipidome evolution in females. Altogether, age determined the circulating lipidome composition, while lipid species analysis revealed additional findings that were not observed at the subclass level.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
- Correspondence: (J.I.); (A.S.-T.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
- Correspondence: (J.I.); (A.S.-T.)
| |
Collapse
|
3
|
Silsirivanit A, Phoomak C, Teeravirote K, Wattanavises S, Seubwai W, Saengboonmee C, Zhan Z, Inokuchi JI, Suzuki A, Wongkham S. Overexpression of HexCer and LacCer containing 2-hydroxylated fatty acids in cholangiocarcinoma and the association of the increase of LacCer (d18:1-h23:0) with shorter survival of the patients. Glycoconj J 2019; 36:103-111. [PMID: 30888588 DOI: 10.1007/s10719-019-09864-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 01/29/2023]
Abstract
Alteration of glycosphingolipid (GSL) synthesis is observed in many types of cancer. In this study, we have analyzed the expression of sphingolipids and GSLs in cholangiocarcinoma (CCA) tissues and adjacent normal liver tissues. Neutral lipids were extracted from tissue samples using mild-alkaline treatment method followed by TLC and LC-MS analysis. The expression of ceramides, hexosylceramides (HexCer), and lactosylceramides (LacCer) was altered in CCA tissues, 61.1% (11/18) of them showing an increase whereas 38.9% (7/18) showing a decrease, compared with the adjacent normal tissue. Cers and GSLs containing 2-hydroxylated fatty acids except one LacCer molecular species were overexpressed in CCA tissues, and the increase of LacCer (d18:1-h23:0) was correlated with shorter survival of CCA patients, suggesting the involvement of GSL synthesis and fatty acid hydroxylation in progression of CCA. Taken together, we have demonstrated in this study the increase of GSL synthesis and fatty hydroxylation in CCA, which probably be used as a target for CCA treatment.
Collapse
Affiliation(s)
- Atit Silsirivanit
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chatchai Phoomak
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Karuntarat Teeravirote
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sasiprapa Wattanavises
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Zhaoqi Zhan
- Shimadzu Asia Pacific Pte Ltd, Singapore Science Park I, Singapore, Singapore
| | - Jin-Ichi Inokuchi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Sopit Wongkham
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Chan CY, Wang WX. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:160-170. [PMID: 30273783 DOI: 10.1016/j.aquatox.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) can cause oxidative stress and inflammatory responses, and there is arising evidence between Cu toxicity and lipid disturbance. In this study, we examined the relationships between Cu exposure and lipid metabolism in an estuarine oyster (Crassostrea hongkongensis) and aimed to understand the effects and resilience strategies of Cu on oyster metabolism. We exposed the oysters to waterborne Cu (10 and 50 μg/L) and measured the physiological changes (condition index and clearance rate), lipid accumulation and lipid peroxidation in the oysters. We found more altered lipid responses in oysters exposed to a lower Cu concentration (10 μg/L), and speculated that oysters exposed to 50 μg/L may upregulate the defenses. We further evaluated the changes in lipidome profiling of the Cu-exposed oysters in aspects of membrane dynamics, lipid signaling and energy metabolism. We documented the phospholipid remodeling as well as quick modulation in inflammatory responses and extensive vesicle formation for subcellular compartmentalization and autophagosome formation, as well as the possible impacts on mitochondrial bioenergetics in the Cu-exposed oysters. The lipidomics approach provided a comprehensive lipid profile of possible alteration by Cu exposure. In combination with other omics approaches, it may be possible to elucidate the pathways and mechanisms in stress acclimation and resilience associated between Cu contamination and lipid metabolism.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, China; Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, China; Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|