1
|
Iacobescu GL, Corlatescu AD, Serban B, Spiridonica R, Costin HP, Cirstoiu C. Genetics and Molecular Pathogenesis of the Chondrosarcoma: A Review of the Literature. Curr Issues Mol Biol 2024; 46:12658-12671. [PMID: 39590345 PMCID: PMC11593320 DOI: 10.3390/cimb46110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The chondrosarcoma, a cartilage-forming bone tumor, presents significant clinical challenges due to its resistance to chemotherapy and radiotherapy. Surgical excision remains the primary treatment, but high-grade chondrosarcomas are prone to recurrence and metastasis, necessitating the identification of reliable biomarkers for diagnosis and prognosis. This review explores the genetic alterations and molecular pathways involved in chondrosarcoma pathogenesis. These markers show promise in distinguishing between benign enchondromas and malignant chondrosarcomas, assessing tumor aggressiveness, and guiding treatment. While these advancements offer hope for more personalized and targeted therapeutic strategies, further clinical validation of these biomarkers is essential to improve prognostic accuracy and patient outcomes in chondrosarcoma management.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Bogdan Serban
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan Spiridonica
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Horia Petre Costin
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Catalin Cirstoiu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
2
|
Walter SG, Knöll P, Eysel P, Quaas A, Gaisendrees C, Nißler R, Hieggelke L. Molecular In-Depth Characterization of Chondrosarcoma for Current and Future Targeted Therapies. Cancers (Basel) 2023; 15:cancers15092556. [PMID: 37174021 PMCID: PMC10177611 DOI: 10.3390/cancers15092556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Chondrosarcoma (CHS) are heterogenous, but as a whole, represent the second most common primary malignant bone tumor entity. Although knowledge on tumor biology has grown exponentially during the past few decades, surgical resection remains the gold standard for the treatment of these tumors, while radiation and differentiated chemotherapy do not result in sufficient cancer control. An in-depth molecular characterization of CHS reveals significant differences compared to tumors of epithelial origin. Genetically, CHS are heterogenous, but there is no characteristic mutation defining CHS, and yet, IDH1 and IDH2 mutations are frequent. Hypovascularization, extracellular matrix composition of collagen, proteoglycans, and hyaluronan create a mechanical barrier for tumor suppressive immune cells. Comparatively low proliferation rates, MDR-1 expression and an acidic tumor microenvironment further limit therapeutic options in CHS. Future advances in CHS therapy depend on the further characterization of CHS, especially the tumor immune microenvironment, for improved and better targeted therapies.
Collapse
Affiliation(s)
- Sebastian Gottfried Walter
- Department for Orthopedic Surgery and Traumatology, University Hospital Cologne, Joseph-Stelzmann-Str. 24, 50931 Cologne, Germany
| | - Peter Knöll
- Department for Orthopedic Surgery and Traumatology, University Hospital Cologne, Joseph-Stelzmann-Str. 24, 50931 Cologne, Germany
| | - Peer Eysel
- Department for Orthopedic Surgery and Traumatology, University Hospital Cologne, Joseph-Stelzmann-Str. 24, 50931 Cologne, Germany
| | - Alexander Quaas
- Department for Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christopher Gaisendrees
- Department for Cardiothoracic Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Robert Nißler
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Lena Hieggelke
- Department for Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
3
|
Abunimer AM, Hammoudeh L, Dee EC, Lak AM, Chi J, Lu Y, Groff M, Shin JH, Lam MB, Zaidi HA. Gross total resection of spinal chondrosarcoma is associated with improved locoregional relapse-free survival and overall survival. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:994-1002. [PMID: 36592209 DOI: 10.1007/s00586-022-07505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/05/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Spinal chondrosarcomas are rare malignant osseous tumors. The low incidence of spinal chondrosarcomas and the complexity of spine anatomy have led to heterogeneous treatment strategies with varying curative and survival rates. The goal of this study is to investigate prognostic factors for locoregional recurrence-free survival (LRFS) and overall survival (OS) comparing en bloc vs. piecemeal resection for the management of spinal chondrosarcoma. METHODS We retrospectively identified patients who underwent curative-intent resection of primary and metastatic spinal chondrosarcoma over a 25-year period. Univariate and multivariate survival analyses were conducted with LRFS as primary endpoint and OS as secondary endpoint. LRFS and OS were modeled using the Kaplan-Meier method and assessed using Cox regression analysis. RESULTS For 72 patients who underwent first resection, the median follow-up time was 5.1 years (95% CI 2.2-7.0). Thirty-three patients (45.8%) had en bloc resection, and 39 (54.2%) had piecemeal resection. Of the 68 patients for whom extent of resection was known, 44 patients had gross total resection (GTR) and 24 patients had subtotal resection. In survival analyses, both LRFS and OS showed statistically significant difference based on the extent of resection (p = 0.001; p = 0.04, respectively). However, only LRFS showed statistically significant difference when assessing the type of resection (p = 0.02). In addition, higher tumor grade and more invasive disease were associated with worse LRFS and OS rates. CONCLUSION Although in our study en bloc and GTR were associated with improved survival, heterogenous and complex spinal presentations may limit total resection. Therefore, the surgical management should be tailored individually to ensure the best local control and maximum preservation of function.
Collapse
Affiliation(s)
- Abdullah M Abunimer
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.,Department of Orthopedic Surgery, Hamad General Hospital, Doha, Qatar
| | - Lubna Hammoudeh
- Department of Radiation Medicine, The Oregon Health & Science University Hospital, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Asad M Lak
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - John Chi
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Yi Lu
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Michael Groff
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - John H Shin
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Miranda B Lam
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Dana Farber Cancer Institute, Boston, USA.
| | - Hasan A Zaidi
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
5
|
Dreher RD, Theisen ER. Lysine specific demethylase 1 is a molecular driver and therapeutic target in sarcoma. Front Oncol 2023; 12:1076581. [PMID: 36686841 PMCID: PMC9846348 DOI: 10.3389/fonc.2022.1076581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcomas are a diverse group of tumors with numerous oncogenic drivers, and display varied clinical behaviors and prognoses. This complexity makes diagnosis and the development of new and effective treatments challenging. An incomplete understanding of both cell of origin and the biological drivers of sarcomas complicates efforts to develop clinically relevant model systems and find new molecular targets. Notably, the histone lysine specific demethylase 1 (LSD1) is overexpressed in a number of different sarcomas and is a potential therapeutic target in these malignancies. With the ability to modify histone marks, LSD1 is a key player in many protein complexes that epigenetically regulate gene expression. It is a largely context dependent enzyme, having vastly different and often opposing roles depending on the cellular environment and which interaction partners are involved. LSD1 has been implicated in the development of many different types of cancer, but its role in bone and soft tissue sarcomas remains poorly understood. In this review, we compiled what is known about the LSD1 function in various sarcomas, to determine where knowledge is lacking and to find what theme emerge to characterize how LSD1 is a key molecular driver in bone and soft tissue sarcoma. We further discuss the current clinical landscape for the development of LSD1 inhibitors and where sarcomas have been included in early clinical trials.
Collapse
Affiliation(s)
- Rachel D. Dreher
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
| | - Emily R. Theisen
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Methylation-mediated silencing of protein kinase C zeta induces apoptosis avoidance through ATM/CHK2 inactivation in dedifferentiated chondrosarcoma. Br J Cancer 2022; 126:1289-1300. [PMID: 35017658 PMCID: PMC9042856 DOI: 10.1038/s41416-021-01695-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Dedifferentiated chondrosarcoma (DDCS) is an aggressive bone tumour with a poor prognosis and no effective treatment. Because changes in DNA methylation play critical roles in DDCS, we explored the roles that DNA methylation plays in oncogenesis to potentially identify an effective epigenetic treatment. METHODS We identified genes downregulated in DDCS vs. conventional chondrosarcoma (CCS) due to DNA methylation using in silico analysis. The results were validated in DDCS clinical samples, and the molecular functions of the genes of interest were investigated in multiple chondrosarcoma cell lines (NDCS-1, SW1353, and OUMS-27). The therapeutic effect of decitabine, a DNA methyltransferase inhibitor, was evaluated in vitro and in vivo. RESULTS PRKCZ was specifically downregulated by DNA methylation in DDCS. Overexpression of PRKCZ decreased the proliferation of NDCS-1 and SW1353 cells. PRKCZ directly bound to and activated ATM, which was followed by phosphorylation of CHK2 and subsequent apoptosis. Decitabine increased PRKCZ expression through de-methylating the promoter region of PRKCZ, which activated the ATM/CHK2 pathway and inhibited cell proliferation by inducing apoptosis. CONCLUSIONS Increased DNA methylation and reduced expression of PRKCZ prevents apoptosis via inactivation of the ATM/CHK2 pathway in DDCS. Decitabine-induced expression of PRKCZ represents a promising therapy for DDCS.
Collapse
|
7
|
Rock A, Ali S, Chow WA. Systemic Therapy for Chondrosarcoma. Curr Treat Options Oncol 2022; 23:199-209. [PMID: 35190971 DOI: 10.1007/s11864-022-00951-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Clinical trial enrollment should be actively encouraged in all patients diagnosed with advanced, surgically unresectable chondrosarcoma (CS) due to the lack of consensus treatment recommendations. In the absence of an appropriate clinical trial, treatments are determined based on histologic subtype of CS with consideration given to targetable mutations (i.e., IDH1). Conventional CS is inherently resistant to cytotoxic chemotherapy and patients may benefit from antiangiogenic therapy including off-label use of pazopanib. Individuals harboring an IDH1 mutation may derive clinical benefit from ivosidenib, an IDH1 inhibitor. Upon progression and with functional status permitting, alternative options include mTOR inhibitors (sirolimus, temsirolimus) or other tyrosine kinase inhibitors (dasatinib), though no clear sequencing data exists. For dedifferentiated CS, conventional chemotherapies with osteosarcoma-like regimens are upfront options although prospective data is limited with minimal overall benefit. Alternative treatment options include immunotherapy with pembrolizumab or ivosidenib in IDH1-mutant, dedifferentiated CS, but questionable efficacy was observed in small sample sizes with either approach. In mesenchymal CS, treatment with Ewing sarcoma-like chemotherapy regimens may be considered, although data supporting its use is even more limited given its rarity.
Collapse
Affiliation(s)
- Adam Rock
- Harbor-UCLA Medical Center, 1000 W. Carson St, Torrance, CA, 90502, USA
| | - Sana Ali
- Harbor-UCLA Medical Center, 1000 W. Carson St, Torrance, CA, 90502, USA
| | - Warren A Chow
- University of California Irvine, 101 The City Drive South, Orange, CA, 92868, USA. .,UCI Health, 101 The City Drive South, Building 63, Room 412, ZOT 4061, Orange, CA, 92868, USA.
| |
Collapse
|
8
|
Liu Y, Feng Z, Chen H. Integrated analysis of the expression, involved functions, and regulatory network of RUNX3 in melanoma. Comb Chem High Throughput Screen 2021; 25:1552-1564. [PMID: 34397327 DOI: 10.2174/1386207324666210816121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a tumor suppressor or oncogenic gene, abnormal expression of RUNX family transcription factor 3 (RUNX3) has been reported in various cancers. <p> Introduction: This study aimed to investigate the role of RUNX3 in melanoma. <p> Methods: The expression level of RUNX3 in melanoma tissues was analyzed by immunohistochemistry and the Oncomine database. Based on microarray datasets GSE3189 and GSE7553, differentially expressed genes (DEGs) in melanoma samples were screened, followed by functional enrichment analysis. Gene Set Enrichment Analysis (GSEA) was performed for RUNX3. DEGs that co-expressed with RUNX3 were analyzed, and the transcription factors (TFs) of RUNX3 and its co-expressed genes were predicted. The protein-protein interactions (PPIs) for RUNX3 were analyzed utilizing the GeneMANIA database. MicroRNAs (miRNAs) that could target RUNX3 expression, were predicted. <p> Results: RUNX3 expression was significantly up-regulated in melanoma tissues. GSEA showed that RUNX3 expression was positively correlated with melanogenesis and melanoma pathways. Eleven DEGs showed significant co-expression with RUNX3 in melanoma, for example, TLE4 was negatively co-expressed with RUNX3. RUNX3 was identified as a TF that regulated the expression of both itself and its co-expressed genes. PPI analysis showed that 20 protein-encoding genes interacted with RUNX3, among which 9 genes were differentially expressed in melanoma, such as CBFB and SMAD3. These genes were significantly enriched in transcriptional regulation by RUNX3, RUNX3 regulates BCL2L11 (BIM) transcription, regulation of I-kappaB kinase/NF-kappaB signaling, and signaling by NOTCH. A total of 31 miRNAs could target RUNX3, such as miR-326, miR-330-5p, and miR-373-3p. <p> Conclusion: RUNX3 expression was up-regulated in melanoma and was implicated in the development of melanoma.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhang Feng
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
9
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
10
|
de Nigris F, Ruosi C, Napoli C. Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 2021; 143:115605. [PMID: 32829036 DOI: 10.1016/j.bone.2020.115605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
A great interest in the scientific community is focused on the improvement of the cure rate in patients with bone malignancies that have a poor response to the first line of therapies. Novel treatments currently include epigenetic compounds or molecules targeting epigenetic-sensitive pathways. Here, we offer an exhaustive review of such agents in these clinical settings. Carefully designed preclinical studies selected several epigenetic drugs, including inhibitors of DNA methyltransferase (DNMTIs), such as Decitabine, histone deacetylase classes I-II (HDACIs), as Entinostat, Belinostat, lysine-specific histone demethylase (LSD1), as INCB059872 or FT-2102 (Olutasidenib), inhibitors of isocitrate dehydrogenases, and enhancer of zeste homolog 2 (EZH2), such as EPZ6438 (Tazemetostat) To enhance the therapeutic effect, the prevalent approach in phase II trial is the association of these epigenetic drug inhibitors, with targeted therapy or immune checkpoint blockade. Optimization of drug dosing and regimens of Phase II trials may improve the clinical efficiency of such novel therapeutic approaches against these devastating cancers.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, IT, Italy
| |
Collapse
|
11
|
Rustagi T, Schwab JH, Iwenofu H, Mendel E. Overview of the management of primary tumors of the spine. Int J Neurosci 2020; 132:543-557. [PMID: 32942943 DOI: 10.1080/00207454.2020.1825423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
STUDY DESIGN Narrative review. OBJECTIVE To provide a narrative review for diagnosis and management of Primary spine tumors. METHODS A detailed review of literature was done to identify relevant and well cited manuscripts to construct this narrative review. RESULTS Primary tumors of the spine are rare with some racial differences reported. There are numerous adjuvant technologies and developments that influence the way we currently manage these tumors. Collimated radiation allows for heavy dosage to be delivered and have been reported to give good local control both as an adjuvant and neoadjuvant setting. These have made surgical decision making even more intricate needing a multicentric approach. Dedicated care has been shown to significantly improve health quality of life measures and survival. CONCLUSION While, it is beyond the scope of this paper to discuss all primary tumors subtypes individually, this review highlights the developments and approach to primary spine tumors.
Collapse
Affiliation(s)
- Tarush Rustagi
- Department of Neurosurgery, The Ohio State University and Wexner Medical Center, The James Cancer Hospital and Solvo Research Institute, Columbus, OH, USA.,Department of Orthopedics and Spine Surgery, Indian Spinal Injuries Centre, New Delhi, India
| | - Joseph H Schwab
- Department of Orthopedic Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Orthopedics, Harvard Medical School, Boston, MA, USA
| | - Hans Iwenofu
- Division of Soft Tissue & Bone Pathology, Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solvo Research Institute, Columbus, OH, USA
| | - Ehud Mendel
- Department of Neurosurgery, The Ohio State University and Wexner Medical Center, The James Cancer Hospital and Solvo Research Institute, Columbus, OH, USA
| |
Collapse
|
12
|
Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020; 11:5293-5308. [PMID: 32742476 PMCID: PMC7391194 DOI: 10.7150/jca.42816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis, treatment and prognosis of sarcoma are mainly dependent on tissue biopsy, which is limited in its ability to provide a panoramic view into the dynamics of tumor progression. In addition, effective biomarkers to monitor the progression and therapeutic response of sarcoma are lacking. Liquid biopsy, a recent technological breakthrough, has gained great attention in the last few decades. Nucleic acids (such as DNA, mRNAs, microRNAs, and long non-coding RNAs) that are released from tumors circulate in the blood of cancer patients and can be evaluated through liquid biopsy. Circulating tumor nucleic acids reflect the intertumoral and intratumoral heterogeneity, and thus liquid biopsy provides a noninvasive strategy to examine these molecules compared with traditional tissue biopsy. Over the past decade, a great deal of information on the potential utilization of circulating tumor nucleic acids in sarcoma screening, prognosis and therapy efficacy monitoring has emerged. Several specific gene mutations in sarcoma can be detected in peripheral blood samples from patients and can be found in circulating tumor DNA to monitor sarcoma. In addition, circulating tumor non-coding RNA may also be a promising biomarker in sarcoma. In this review, we discuss the clinical application of circulating tumor nucleic acids as blood-borne biomarkers in sarcoma.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xinyue Liu
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ting Li
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Peipei Xing
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chao Zhang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jilong Yang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
13
|
Oncosuppressive Role of RUNX3 in Human Astrocytomas. JOURNAL OF ONCOLOGY 2019; 2019:1232434. [PMID: 31467531 PMCID: PMC6699290 DOI: 10.1155/2019/1232434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/29/2023]
Abstract
Background Gliomas are the most common and aggressive among primary malignant brain tumours with significant inter- and intratumour heterogeneity in histology, molecular profile, and patient outcome. However, molecular targets that could provide reliable diagnostic and prognostic information on this type of cancer are currently unknown. Recent studies show that certain phenotypes of gliomas such as malignancy, resistance to therapy, and relapses are associated with the epigenetic alterations of tumour-specific genes. Runt-related transcription factor 3 (RUNX3) is feasible tumour suppressor gene since its inactivation was shown to be related to carcinogenesis. Aim The aim of the study was to elucidate RUNX3 changes in different regulation levels of molecular biology starting from epigenetics to function in particular cases of astrocytic origin tumours of different grade evaluating significance of molecular changes of RUNX3 for patient clinical characteristics as well as evaluate RUNX3 reexpression effect to GBM cells. Methods The methylation status and protein expression levels of RUNX3 were measured by methylation-specific PCR and Western blot in 136 and 72 different malignancy grade glioma tissues, respectively. Lipotransfection and MTT were applied for proliferation assessment in U87-MG cells. Results We found that RUNX3 was highly methylated and downregulated in GBM. RUNX3 promoter methylation was detected in 69.4% of GBM (n=49) as compared to 0 to 17.2% in I-III grade astrocytomas (n=87). Weighty lower RUNX3 protein level was observed in GMB specimens compared to grade II-III astrocytomas. Correlation test revealed a weak but significant link among Runx3 methylation and protein level. Kaplan-Meier analysis showed that increased RUNX3 methylation and low protein level were both associated with shorter patient survival (p<0.05). Reexpression of RUNX3 in U87-MG cells significantly reduced glioma cell viability compared to control transfection. Conclusions The results demonstrate that RUNX3 gene methylation and protein expression downregulation are glioma malignancy dependent and contribute to tumour progression.
Collapse
|
14
|
Abstract
Chondrosarcomas constitute a heterogeneous group of primary bone cancers characterized by hyaline cartilaginous neoplastic tissue. They are the second most common primary bone malignancy. The vast majority of chondrosarcomas are conventional chondrosarcomas, and most conventional chondrosarcomas are low- to intermediate-grade tumors (grade 1 or 2) which have indolent clinical behavior and low metastatic potential. Recurrence augurs a poor prognosis, as conventional chondrosarcomas are both radiation and chemotherapy resistant. Recent discoveries in the biology, genetics, and epigenetics of conventional chondrosarcomas have significantly advanced our understanding of the pathobiology of these tumors and offer insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Warren A Chow
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
15
|
Fehlings MG, Ahuja CS, Mroz T, Hsu W, Harrop J. Future Advances in Spine Surgery: The AOSpine North America Perspective. Neurosurgery 2017; 80:S1-S8. [PMID: 28350952 DOI: 10.1093/neuros/nyw112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023] Open
Abstract
This focus issue highlights state-of-the-art techniques, equipment, and practices in the modern era of spine surgery while providing a glimpse into the next generation of patient care. A broad range of topics are presented to cover the full spectrum of the field. Degenerative diseases are discussed in a series of 3 articles on (1) pathophysiology, management, and surgical approaches to degenerative cervical myelopathy; (2) novel approaches to degenerative thoracolumbar disease (eg, interspinous process spacers, minimally invasive/endoscopic approaches); and (3) animal models and emerging therapeutics in degenerative disk disease. Also included is a unique study aiming to establish the critically important cost-benefit relationship for spine procedures with perspectives on how value is defined and how to address variability.Primary and metastatic spine oncology are reviewed with a focus on upcoming targeted biologics, subspecialized radiotherapy (eg, proton-beam, carbon-ion, stereotactic radiosurgery), genetic profiling to stratify risk, and morbidity-reducing surgical approaches (eg, minimally invasive/endoscopic resections, percutaneous instrumentation). Trauma is discussed in 2 high-quality papers on controversies in spinal trauma and neuroprotective/neuroregenerative interventions for traumatic spinal cord injury. A stimulating article on cervical, thoracolumbar, and pediatric deformity highlights the rapid evolution of deformity surgery with a look at innovative tools (eg, high-fidelity 3-dimensional reconstructions, magnetically controlled growing rods) and their impact on quality of life. Additionally, a must-read article on surgical site infections discusses key risk factors and evidence-based preventative techniques to remain aware of. Finally, cutting-edge technologies, including computer-assisted navigation, shared-control robotics, neuromodulation, novel osteobiologics, and biomaterials, are covered in detail in a series of 3 fascinating papers on the next generation of the field.Each section intends to highlight the salient literature and afford insights from multiple key thought leaders in an effort to minimize bias and provide varied perspectives. Overall, we hope this issue provides high-quality, evidence-based data relevant to trainees and practicing surgeons while also stimulating excitement about the future of spine surgery.
Collapse
Affiliation(s)
| | | | - Thomas Mroz
- Departments of Orthopaedic and Neurological Surgery, The Cleveland Clinic, Cleveland, Ohio
| | - Wellington Hsu
- Department of Orthopaedic Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - James Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Wang N, Sui F, Ma J, Su X, Liu J, Yao D, Shi B, Hou P, Yang Q. Site-specific Hypermethylation of RUNX3 Predicts Poor Prognosis in Gastric Cancer. Arch Med Res 2017; 47:285-92. [PMID: 27664488 DOI: 10.1016/j.arcmed.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Methylation status of RUNX3 remains largely unknown in gastric cancer (GC). The aim of this study was to prognostically evaluate the methylation level of CpG sites within RUNX3 promoter region in GC. METHODS Using pyrosequencing, we quantitatively explored the methylation status of 8 CpG sites within RUNX3 promoter region for 76 gastric cancer and 24 normal gastric tissues. We then analyzed the association between methylation level of each CpG site and clinicopathological characteristics and outcomes in the cohort. RESULTS Methylation of RUNX3 promoter was significantly higher in GC than normal subjects. Overall methylation level was closely associated with tumor invasion and TNM stage. Positive associations were found between hypermethylation of the following concerned sites and variables: site -1392, -1397, -1403, -1415 and tumor invasion, as well as TNM stage; site -1392 and lymph node metastasis along with number of lymph node metastases; site -1415 and cancer recurrence; site -1403, -1415 and cancer-related deaths. In multivariate analysis, tumor invasion was correlated with sites -1392 and -1397. Lymph node metastasis was associated with site -1392. Most importantly, methylation of site -1415 was associated with poor survival by using Cox survival regression. CONCLUSION Analysis of RUNX3 gene promoter by quantitative pyrosequencing suggested methylation status of RUNX3 is different in normal and tumor tissues. RUNX3 methylation level is associated with GC, especially the methylation at site -1415 contributes to the poor prognosis in GC. Thus, RUNX3 methylation may serve as a valuable diagnostic and prognostic biomarker in GC.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jingjing Ma
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xi Su
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jiazhe Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Demao Yao
- Department of Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
17
|
Wnt inhibitory factor 1 (WIF1) methylation and its association with clinical prognosis in patients with chondrosarcoma. Sci Rep 2017; 7:1580. [PMID: 28484252 PMCID: PMC5431504 DOI: 10.1038/s41598-017-01763-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Chondrosarcoma (CS) is a rare cancer, but it is the second most common primary malignant bone tumor and highly resistant to conventional chemotherapy and radiotherapy. Aberrant DNA methylation in the promoter CpG island of Wnt inhibitory factor 1 (WIF1) has been observed in different cancers. However, no studies have shown the relationship between WIF1 methylation and CS. In this study, we found promoter methylated WIF1 in both CS cell lines (CS-1 and SW1353) and tumor tissues. Western blot analysis confirmed loss WIF1 expression and activation of Wnt pathway proteins (Wnt5a/b, LRP6, and Dvl2). We subsequently examined the correlation between levels of WIF1 methylation and overall survival (OS) and progression-free survival (PFS) in CS patient samples with a follow-up spanning 234 months (mean: 57.6 months). Kaplan-Meier survival curves and log-rank tests revealed that high levels of WIF1 methylation were associated with lower OS and PFS rates (p < 0.05). Multivariate Cox hazard analysis suggested that detection of high level methylation of WIF1 could be an independent prognostic factor in OS and PFS. In conclusion, we found that WIF1 is epigenetically silenced via promoter DNA methylation in CS and propose that WIF1 methylation may serve as a potential prognostic marker for patients with CS.
Collapse
|
18
|
Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol 2017; 34:78-90. [PMID: 28432450 DOI: 10.1007/s10014-017-0283-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Chordomas and chondrosarcomas are two major malignant bone neoplasms located at the skull base. These tumors are rarely metastatic, but can be locally invasive and resistant to conventional chemotherapies and radiotherapies. Accordingly, therapeutic approaches for the treatment of these tumors can be difficult. Additionally, their location at the skull base makes them problematic. Although accurate diagnosis of these tumors is important because of their distinct prognoses, distinguishing between these tumor types is difficult due to overlapping radiological and histopathological findings. However, recent accumulation of molecular and genetic studies, including extracranial location analysis, has provided us clues for accurate diagnosis. In this report, we review the genetic aberrations and molecular biology of these two tumor types. Among the abundant genetic features of these tumors, brachyury immunohistochemistry and direct sequencing of IDH1/2 are simple and useful techniques that can be used to distinguish between these tumors. Although it is still unclear why these tumors, which have such distinct genetic backgrounds, show similar histopathological findings, comparison of their genetic backgrounds could provide essential information.
Collapse
|
19
|
Dea N, Gokaslan Z, Choi D, Fisher C. Spine Oncology – Primary Spine Tumors. Neurosurgery 2017; 80:S124-S130. [DOI: 10.1093/neuros/nyw064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/10/2016] [Indexed: 01/12/2023] Open
|
20
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
21
|
|
22
|
Liu P, Shen JK, Xu J, Trahan CA, Hornicek FJ, Duan Z. Aberrant DNA methylations in chondrosarcoma. Epigenomics 2016; 8:1519-1525. [PMID: 27686001 DOI: 10.2217/epi-2016-0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chondrosarcoma (CS) is the second most common primary malignant bone tumor. Unlike other bone tumors, CS is highly resistant to conventional chemotherapy and radiotherapy, thus resulting in poor patient outcomes. There is an urgent need to establish alternative therapies for CS. However, the etiology and pathogenesis of CS still remain elusive. Recently, DNA methylation-associated epigenetic changes have been found to play a pivotal role in the initiation and development of human cancers, including CS, by regulating target gene expression in different cellular pathways. Elucidating the mechanisms of DNA methylation alteration may provide biomarkers for diagnosis and prognosis, as well as novel treatment options for CS. We have conducted a critical review to summarize the evidence regarding aberrant DNA methylation patterns as diagnostic biomarkers, predictors of progression and potential treatment strategies in CS.
Collapse
Affiliation(s)
- Pei Liu
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital & Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital & Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Jianzhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Carol A Trahan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital & Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital & Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital & Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| |
Collapse
|
23
|
Abstract
STUDY DESIGN An ambispective cohort study. OBJECTIVE The aim of this study was to determine whether the application of the Enneking classification in the management of spinal chondrosarcomas influences local recurrence and survival. SUMMARY OF BACKGROUND DATA Primary spinal chondrosarcomas are rare. Best available evidence is based on small case series, thus making it difficult to determine optimal management and risk factors for local recurrence and survival. METHODS The AOSpine Knowledge Forum Tumor developed a multicenter ambispective database of surgically treated patients with spinal chondrosarcoma. Patient data pertaining to demographics, diagnosis, treatment, cross-sectional survival, and local recurrence were collected. Tumors were classified according to the Enneking classification. Patients were divided into two cohorts: Enneking appropriate (EA) and Enneking inappropriate (EI). They were categorized as EA when the final pathological assessment of the margin matched the Enneking recommendation, and otherwise, they were categorized as EI. RESULTS Between 1987 and 2011, 111 patients (37 female; 74 male) received surgical treatment for a primary spinal chondrosarcoma at a mean age of 47.4 ± 15.8 years. Patients were followed for a median period of 3.1 years (range = 203 d-18.7 yrs). Median survival for the entire cohort was 8.4 years postoperative. After 10 years postoperative, 36 (32%) patients died and 37 (35%) patients suffered a local recurrence. Twenty-three of these 37 patients who suffered a local recurrence died. Sixty (58%) patients received an EA procedure while 44 (42%) received an EI procedure. EI patients had a higher hazard ratio for local recurrence than those who received an EA procedure (P = 0.052). Local recurrence was strongly associated with chondrosarcoma-related death (risk ratio = 3.6, P < 0.010). CONCLUSION This is the largest multicenter cohort of spinal chondrosarcomas. EA surgical management appeared to correlate with a decreased risk of local recurrence, yet no relationship with survival was found. Where possible, surgeons should strive to achieve EA margins to minimize the risk of local recurrence. LEVEL OF EVIDENCE 4.
Collapse
|
24
|
Kim HJ, Park J, Lee SK, Kim KR, Park KK, Chung WY. Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer. J Pathol 2015; 237:520-31. [PMID: 26239696 PMCID: PMC4832375 DOI: 10.1002/path.4597] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/10/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
Non‐small cell lung cancer (NSCLC) frequently metastasizes to bone, which is associated with significant morbidity and a dismal prognosis. RUNX3 functions as a tumour suppressor in lung cancer and loss of expression occurs more frequently in invasive lung adenocarcinoma than in pre‐invasive lesions. Here, we show that RUNX3 and RUNX3‐regulated chemokines are linked to NSCLC‐mediated bone resorption. Notably, the receptor activator of nuclear factor‐κB ligand (RANKL)/osteoprotegerin (OPG) ratio, an index of osteoclastogenic stimulation, was significantly increased in human osteoblastic cells treated with conditioned media derived from RUNX3‐knockdown NSCLC cells. We aimed to identify RUNX3‐regulated factors that modify the osteoblastic RANKL/OPG ratio and found that RUNX3 knockdown led to CCL5 up‐regulation and down‐regulation of CCL19 and CXCL11 in NSCLC cells. Tumour size was noticeably increased and more severe osteolytic lesions were induced in the calvaria and tibiae of mice that received RUNX3‐knockdown cells. In response to RUNX3 knockdown, serum and tissue levels of CCL5 increased, whereas CCL19 and CXCL11 decreased. Furthermore, CCL5 increased the proliferation, migration, and invasion of lung cancer cells in a dose‐dependent manner; however, CCL19 and CXCL11 did not show any significant effects. The RANKL/OPG ratio in osteoblastic cells was increased by CCL5 but reduced by CCL19 and CXCL11. CCL5 promoted osteoclast differentiation, but CCL19 and CXCL11 reduced osteoclastogenesis in RANKL‐treated bone marrow macrophages. These findings suggest that RUNX3 and related chemokines are useful markers for the prediction and/or treatment of NSCLC‐induced bone destruction. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Junhee Park
- Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Sun Kyoung Lee
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Ki Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju, Korea
| | - Kwang-Kyun Park
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
25
|
Jin Z, Han YX, Han XR. The role of APOBEC3B in chondrosarcoma. Oncol Rep 2014; 32:1867-72. [PMID: 25176183 DOI: 10.3892/or.2014.3437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/08/2014] [Indexed: 11/06/2022] Open
Abstract
Chondrosarcomas rank as the third most common type of bone tumors. In the present study, we demonstrated that expression of the apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3B (APOBEC3B) was higher in cancer tissues when compared to that in normal tissues. In order to further investigate the effects of APOBEC3B expression, we knocked down APOBEC3B expression in chondrosarcoma cells. We found that the percentage of apoptotic cells was higher in the APOBEC3B-knockdown cells than the percentage in the untransfected cells. Furthermore, we found that the reduced antitumor activity of RUNX3 was caused by APOBEC3B. Finally, we demonstrated that caspase-3, -8 and -9 activity was significantly increased in the RUNX3-expressing cells with APOBEC3B knockdown. In summary, our results indicate that APOBEC3B knockdown may be a useful therapy to enhance apoptosis in chondrosarcoma.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Joint Surgery and Sports Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ya-Xin Han
- Department of Joint Surgery and Sports Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Rui Han
- Department of Joint Surgery and Sports Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|