1
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
2
|
Kurowska P, Mlyczyńska E, Dawid M, Dupont J, Rak A. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A†. Biol Reprod 2021; 102:1290-1305. [PMID: 32149334 PMCID: PMC7703729 DOI: 10.1093/biolre/ioaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Joelle Dupont
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research-INRA, Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
3
|
Wu JF, Liu Y, Zi XD, Li H, Lu JY, Jing T. Molecular cloning, sequence, and expression patterns of DNA damage induced transcript 3 (DDIT3) gene in female yaks ( Bos grunniens). Anim Biotechnol 2021; 34:280-287. [PMID: 34353209 DOI: 10.1080/10495398.2021.1957686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endoplasmic reticulum stress (ERS) plays an important role in regulating the reproductive process of female mammals, mainly involved in follicular atresia and corpus luteum regression. DNA damage induced transcript 3 (DDIT3) is a marker gene of ERS. The objectives of the present study were to clone and analyze the sequence and tissue expression characteristics of DDIT3 gene in female yaks. By reverse transcriptase-polymerase chain reaction (RT-PCR) strategy, we obtained full-length 507-bp DDIT3-cDNA, encoding for 168-aa protein. Yak DDIT3 exhibited highest and least identity with that of bison and horse, respectively. Real-time PCR analyses revealed that the expression level of DDIT3 gene in ovary was higher than that in heart, liver, kidney, spleen, lung, uterus and oviduct (p < 0.05). DDIT3 expression level in ovary and uterus during pregnancy was higher than that in follicular phase, luteal phase and fetus stage. DDIT3 was highly expressed in metaphase II oocytes and granulosa cells than that in germinal vesicle and metaphase I oocytes (p < 0.05), respectively. This is the first molecular characterization and expression patterns of DDIT3 gene in female yaks. These results indicated that the DDIT3 gene possibly plays an important role in regulating ovary function and pregnancy maintenance in yaks.
Collapse
Affiliation(s)
- Jian-Fei Wu
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Yu Liu
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Xiang-Dong Zi
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Heng Li
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Jian-Yuan Lu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, PR China
| | - Tian Jing
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| |
Collapse
|
4
|
de Brun V, Loor JJ, Naya H, Graña-Baumgartner A, Vailati-Riboni M, Bulgari O, Shahzad K, Abecia JA, Sosa C, Meikle A. The presence of an embryo affects day 14 uterine transcriptome depending on the nutritional status in sheep. b. Immune system and uterine remodeling. Theriogenology 2020; 161:210-218. [PMID: 33340754 DOI: 10.1016/j.theriogenology.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Transcriptomics and bioinformatics were used to investigate the potential interactions of undernutrition and the presence of the conceptus at the time of maternal recognition of pregnancy on uterine immune system and remodeling. Adult Rasa Aragonesa ewes were allocated to one of two planes of nutrition for 28 days: maintenance energy intake (control; 5 cyclic, 6 pregnant ewes) providing 7.8 MJ of metabolisable energy and 0.5 maintenance intake (undernourished; 6 cyclic, 7 pregnant ewes) providing 3.9 MJ of metabolisable energy per ewe. Uterine gene expression was measured using Agilent 15 K Sheep Microarray chip on day 14 of estrus or pregnancy. Functional bioinformatics analyses were performed using PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System. Pregnancy affected the expression of 18 genes in both control and undernourished ewes, underscoring the relevance for embryo-maternal interactions. Immune system evidenced by classical interferon stimulated genes were activated in control and -in a lesser extent-in undernourished pregnant vs cyclic ewes. Genes involved in uterine remodeling such as protein metabolism were also upregulated with the presence of an embryo in control and undernourished ewes. However, relevant genes for the adaptation of the uterus to the embryo were differentially expressed between pregnant vs cyclic ewes both in control and undernourished groups. Undernutrition alone led to an overall weak activation of immune system pathways both in cyclic and pregnant ewes. Data revealed that cellular and immune adaptations of the uterus to pregnancy are dependent on the nutritional status.
Collapse
Affiliation(s)
- Victoria de Brun
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay.
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Hugo Naya
- Departamento de Bioinformática, Institut Pasteur de Montevideo, Uruguay
| | - Andrea Graña-Baumgartner
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay
| | - Mario Vailati-Riboni
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Omar Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Khuram Shahzad
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - José Alfonso Abecia
- Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Spain
| | - Cecilia Sosa
- Departamento de Anatomía Patológica, Medicina Legal, Forense y Toxicología, Universidad de Zaragoza, Spain
| | - Ana Meikle
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Yap KN, Yamada K, Zikeli S, Kiaris H, Hood WR. Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc 2020; 96:541-556. [PMID: 33164297 DOI: 10.1111/brv.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER ). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Shelby Zikeli
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, 29208, U.S.A
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| |
Collapse
|
6
|
Lei L, Ge J, Zhao H, Wang X, Yang L. Role of endoplasmic reticulum stress in lipopolysaccharide-inhibited mouse granulosa cell estradiol production. J Reprod Dev 2019; 65:459-465. [PMID: 31406023 PMCID: PMC6815742 DOI: 10.1262/jrd.2019-052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The decrease in the level of estradiol (E2) in granulosa cells caused by lipopolysaccharide (LPS) is one of the major causes of infertility underlying postpartum uterine
infections; the precise molecular mechanism of which remains elusive. This study investigated the role of endoplasmic reticulum (ER) stress in LPS-induced E2 decrease in mouse
granulosa cells. Our results showed that LPS increased the pro-inflammatory cytokines [(interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α)], activated ER stress marker
protein expression [(glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)], and decreased cytochrome P450 family 19 subfamily A member 1
(Cyp19a1) expression and E2 production. Moreover, inhibition of ER stress by 4-phenylbutyrate (4-PBA) attenuated thapsigargin-(TG, ER stress agonist) or LPS-induced reduction of
Cyp19a1 and E2, pro-inflammatory cytokines expression (IL-1β, IL-6, IL-8, and TNF-α), and the expression of CHOP and GRP78. Additionally, inhibition of toll-like receptor 4 (TLR4)
by resatorvid (TAK-242) reversed the inhibitory effects of LPS on Cyp19a1 expression and E2 production, activation of GRP78 and CHOP, and expression of IL-1β, IL-6, IL-8, and
TNF-α. In summary, our study suggests that ER stress is involved in LPS-inhibited E2 production in mouse granulosa cells.
Collapse
Affiliation(s)
- Lanjie Lei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.,Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Junbang Ge
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.,Beijing Key Laboratory of New Technique in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
7
|
Yang D, Zhang B, Wang Z, Zhang L, Chen H, Zhou D, Tang K, Wang A, Lin P, Jin Y. COPS5 negatively regulates goat endometrial function via the ERN1 and mTOR-autophagy pathways during early pregnancy. J Cell Physiol 2019; 234:18666-18678. [PMID: 30927262 DOI: 10.1002/jcp.28505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
In ruminant, adequate endometrial function is a major factor affecting implantation and economic efficiency. However, the precise mechanisms regulating goat endometrial function during the peri-implantation period of pregnancy are still unclear. Here, we investigated the functional role and signal transduction of the fifth component of the constitutive photomorphogenic-9 signalosome (COPS5) in the regulation of endometrial function in endometrial epithelial cells (EECs). Our results showed that hormones decreased COPS5 expression, and COPS5-mediated regulation of endometrial function. We also found that knockdown of COPS5 hindered EECs proliferation by the G1-phase cell cycle arrest. Hormones affected the activity of COPS5 through hormones receptors, while feedback from the expression of COPS5 regulated the transcription of the receptor. Moreover, knockdown of endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) via si-ERN1 partly inhibited endometrial function in shCOPS5 EECs. In addition, blocking the mTOR pathway by rapamycin promoted endometrial function in si-ERN1-transfected shCOPS5 EECs. Overall, these results suggest that COPS5 negatively regulates goat endometrial function via the ERN1 and mTOR-autophagy pathways and provide new insights into the mechanistic pathways of COPS5 during female reproductive development.
Collapse
Affiliation(s)
- Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zongjie Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Linlin Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Jiang M, Hu L, Wang B, Chen D, Li Y, Zhang Z, Zhu Y. Uterine RGS2 expression is regulated by exogenous estrogen and progesterone in ovariectomized mice, and downregulation of RGS2 expression in artificial decidualized ESCs inhibits trophoblast spreading in vitro. Mol Reprod Dev 2018; 86:88-99. [PMID: 30412338 DOI: 10.1002/mrd.23087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Manxi Jiang
- The Reproductive Medical Center, Guangdong Second Provincial General Hospital; Guangzhou China
| | - Liangshan Hu
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Baoping Wang
- The Reproductive Medical Center, Guangdong Second Provincial General Hospital; Guangzhou China
| | - Danxia Chen
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Yahong Li
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Zhen Zhang
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Yan Zhu
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| |
Collapse
|
9
|
The Interplay between Glucose-Regulated Protein 78 (GRP78) and Steroids in the Reproductive System. Int J Mol Sci 2018; 19:ijms19071842. [PMID: 29932125 PMCID: PMC6073258 DOI: 10.3390/ijms19071842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
The glucose-regulated protein 78 (GRP78) is a molecular chaperone that is responsible for protein folding, which belongs to the heat shock protein 70 kDa (HSPA/HSP70). Because of the conjunction of GRP78 transcription with endoplasmic reticulum stress, the chaperone plays an important role in the unfolded protein response (UPR), which is induced after the accumulation of misfolded proteins. In the last years, a significant body of research concentrated on interplay between GRP78 and sexual steroid hormones. Throughout this review, we describe the mechanisms by which GRP78 regulates steroidogenesis at multiple levels and how steroids modulate GRP78 expression in different mammalian reproductive organs. Finally, we discuss the cooperation between GRP78 and steroids for cell survival and proliferation in the context of reproduction and tumorigenesis. This new paradigm offers significant opportunities for future exploration.
Collapse
|
10
|
Yang D, Jiang T, Liu J, Hong J, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. Hormone regulates endometrial function via cooperation of endoplasmic reticulum stress and mTOR-autophagy. J Cell Physiol 2018; 233:6644-6659. [PMID: 29206294 DOI: 10.1002/jcp.26315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022]
Abstract
In ruminant, the receptive endometrium and the elongation of the hatched blastocyst are required to complete the process of implantation. However, the mechanisms regulating goat endometrial function during the peri-implantation period of pregnancy are still unclear. In this study, EECs were treated with progesterone, estradiol, and interferon-tau (IFNT). We have found that endoplasmic reticulum (ER) stress was activated under hormones treatment. To identify the cellular mechanism of regulation of endometrial function, we investigated the effect of ER stress activator thapsigargin (TG) and inhibitor 4 phenyl butyric acid (4-PBA) on EECs. We found that TG, which activated the three branches of UPR, increased the expression of genes associated with promoting conceptus elongation and cellular attachment, significantly up-regulated the spheroid attachment rate and PGE2 /PGF2α ratio. 4-PBA pre-treatment inhibited UPR and inhibited promoting conceptus elongation and cellular attachment related genes, but the spheroid attachment rate and PGE2 /PGF2α ratio were not changed significantly. Moreover, knockdown of ATF6 via shATF6 promoted the conceptus elongation related genes, but increased the dissolution of the corpus luteum. Besides, blocking ATF6 attenuated autophagy by activating mammalian target of rapamycin (mTOR) pathway. Moreover, rapamycin (mTOR inhibitor) pre-treatment inhibited the expression of promoting conceptus elongation and increased PGE2 /PGF2α ratio. Taken together, our study indicated that physiological level of ER stress may contribute to early pregnancy success, and ATF6 signaling pathway cooperated with autophagy to regulate endometrial function by modulating mTOR pathway.
Collapse
Affiliation(s)
- Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tingting Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianguo Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin Hong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Roles of Grp78 in Female Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:129-155. [PMID: 28389754 DOI: 10.1007/978-3-319-51409-3_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The glucose-regulated protein (GRP78) also referred to as immunoglobulin heavy chain binding protein (Bip) is one of the best characterized endoplasmic reticulum (ER) chaperone proteins, which belongs to the heat-shock protein (HSP) family. GRP78 as a central regulator of ER stress (ERS) plays many important roles in cell survival and apoptosis through controlling the activation of transmembrane ERS sensors: PKR-like ER-associated kinase (PERK), inositol requiring kinase 1 (IRE1), and activating transcription factor 6 (ATF6). Many studies have reported that GRP78 is involved in the physiological and pathological process in female reproduction, including follicular development, corpus luteum (CL), oviduct, uterus, embryo, preimplantation development, implantation/decidualization, and the placenta. The present review summarizes the biological or pathological roles and signaling mechanisms of GRP78 during the reproductive processes. Further study on the functions and mechanisms of GRP78 may provide new insight into mammalian reproduction, which not only enhance the understanding of the physiological roles but also support therapy target against infertility.
Collapse
|
12
|
Gu XW, Yan JQ, Dou HT, Liu J, Liu L, Zhao ML, Liang XH, Yang ZM. Endoplasmic reticulum stress in mouse decidua during early pregnancy. Mol Cell Endocrinol 2016; 434:48-56. [PMID: 27283502 DOI: 10.1016/j.mce.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023]
Abstract
Unfolded or misfolded protein accumulation in the endoplasmic reticulum lumen leads to endoplasmic reticulum stress (ER stress). Although it is known that ER stress is crucial for mammalian reproduction, little is known about its physiological significance and underlying mechanism during decidualization. Here we show that Ire-Xbp1 signal transduction pathway of unfolded protein response (UPR) is activated in decidual cells. The process of decidualization is compromised by ER stress inhibitor tauroursodeoxycholic acid sodium (TUDCA) and Ire specific inhibitor STF-083010 both in vivo and in vitro. A high concentration of ER stress inducer tunicamycin (TM) suppresses stromal cells proliferation and decidualization, while a lower concentration is beneficial. We further show that ER stress induces DNA damage and polyploidization in stromal cells. In conclusion, our data suggest that the GRP78/Ire1/Xbp1 signaling pathway of ER stress-UPR is activated and involved in mouse decidualization.
Collapse
Affiliation(s)
- Xiao-Wei Gu
- Department of Biology, Shantou University, Shantou 515063, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ting Dou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Liu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Li Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Meng-Long Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Huan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zeng-Ming Yang
- Department of Biology, Shantou University, Shantou 515063, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Xiong Y, Li W, Lin P, Wang L, Wang N, Chen F, Li X, Wang A, Jin Y. Expression and regulation of ATF6α in the mouse uterus during embryo implantation. Reprod Biol Endocrinol 2016; 14:65. [PMID: 27717400 PMCID: PMC5055674 DOI: 10.1186/s12958-016-0199-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND ATF6α, one of the sensor proteins in the stress signaling pathway of the endoplasmic reticulum, is located in the membrane of the endoplasmic reticulum. To date, the physiological function of ATF6α in the process of embryo implantation has not been reported. METHODS In this study, the expression pattern of ATF6α in the mouse uterus during peri-implantation and the estrous cycle was detected by real-time PCR, western blot and immunohistochemistry. RESULTS ATF6α mRNA and protein levels were higher in the uterus near the implantation site on day 5 and were intensely expressed in the secondary decidual zone (SDZ) on days 7-8. In the uteri of pseudopregnant mice, ATF6α mRNA and protein levels were lower on day 5 than on other days. The activating blastocyst and artificial decidualization had an obvious effect of increasing the expression of ATF6α. In addition, the expression of ATF6α was affected by progesterone (P4) and estrogen (E2) in ovariectomized mice. This finding is further supported by evidence from mice during the estrous cycle. CONCLUSIONS Thus, we have concluded that ATF6α may play an important role during embryo implantation and decidualization.
Collapse
Affiliation(s)
- Yongjie Xiong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Wenzhe Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xiao Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
14
|
Li X, Lin P, Chen F, Wang N, Zhao F, Wang A, Jin Y. Luman recruiting factor is involved in stromal cell proliferation during decidualization in mice. Cell Tissue Res 2016; 365:437-47. [DOI: 10.1007/s00441-016-2392-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/03/2016] [Indexed: 11/29/2022]
|
15
|
The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res 2015; 363:589-97. [PMID: 26022337 DOI: 10.1007/s00441-015-2212-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum stress (ERS) activates a protective pathway, called the unfold protein response, for maintaining cellular homeostasis, but cellular apoptosis is triggered by excessive or persistent ERS. Several recent studies imply that the ERS response might have broader physiological roles in the various reproductive processes of female mammals, including embryo implantation, decidualization, preimplantation embryonic development, follicle atresia, and the development of the placenta. This review summarizes the existing data concerning the molecular and biological roles of the ERS response. The study of the functions of the ERS response in mammalian reproduction might provide novel insights into and an understanding of reproductive cell survival and apoptosis under physiological and pathological conditions. The ERS response is a novel signaling pathway for reproductive cell survival and apoptosis. Infertility might be a result of disturbing the ERS response during the process of female reproduction.
Collapse
|