1
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Grover C, Kharghoria G, Baran R. Nail lichen planus: A review of clinical presentation, diagnosis and therapy. Ann Dermatol Venereol 2022; 149:150-164. [PMID: 35272870 DOI: 10.1016/j.annder.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
Lichen planus is a multifaceted disease of complex etiopathogenesis. Nails are involved in up to 10% of patients with lichen planus. Although most cases are mild, serious consequences may occur due to rapid progression of the disease, the high risk of scarring, and the resulting irreversible damage to the nail structure. Permanent damage of at least one nail occurs in approximately 4-12% of patients with nail lichen planus. In this narrative review, we emphasize the pathophysiology of nail lichen planus, the emergent nature of the disease, and the spectrum of different clinical manifestations. Diagnosis of nail disease in general, and of nail lichen planus in particular, is rapidly evolving. This review provides a comprehensive account of the non-invasive and invasive diagnostic techniques and treatment options reported in the literature, with emphasis on the efficacy and safety of the drugs used, the associated evidence, and the factors to be taken into account in planning and providing adequate treatment. The role of aesthetic and camouflage options is also summarized.
Collapse
Affiliation(s)
- C Grover
- Department of Dermatology and STD, University College of Medical Sciences and GTB Hospital, 110091 Delhi, India.
| | - G Kharghoria
- Department of Dermatology and STD, All India Institute of Medical Sciences, 110029 Delhi, India
| | - R Baran
- Nail Disease Centre-42, Rue de Serbes, 06400 Cannes, France
| |
Collapse
|
3
|
Marycz K, Pielok A, Kornicka-Garbowska K. Equine Hoof Stem Progenitor Cells (HPC) CD29 + /Nestin + /K15 + - a Novel Dermal/epidermal Stem Cell Population With a Potential Critical Role for Laminitis Treatment. Stem Cell Rev Rep 2021; 17:1478-1485. [PMID: 34037924 PMCID: PMC8149919 DOI: 10.1007/s12015-021-10187-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Laminitis is a life threating, extremely painful and frequently recurrent disease of horses which affects hoof structure. It results from the disruption of blood flow to the laminae, contributing to laminitis and in severe separation of bone from the hoof capsule. Still, the pathophysiology of the disease remains unclear, mainly due to its complexity. In the light of the presented data, in the extremally difficult process of tissue structure restoration after disruption, a novel type of progenitor cells may be involved. Herein, we isolated and performed the initial characterization of stem progenitor cells isolated from the coronary corium of the equine feet (HPC). Phenotype of the cells was investigated with flow cytometry and RT-qPCR revealing the presence of nestin, CD29, and expression of progenitor cell markers including SOX2, OCT4, NANOG and K14. Morphology of HPC was investigated with light, confocal and SEM microscopes. Cultured cells were characterised by spindle shaped morphology, eccentric nuclei, elongated mitochondria, and high proliferation rate. Plasticity and multilineage differentiation potential was confirmed by specific staining and gene expression analysis. We conclude that HPC exhibit in vitro expansion and plasticity similar to mesenchymal stem cells, which can be isolated from the equine foot, and may be directly involved in the pathogenesis and recovery of laminitis. Obtained results are of importance to the field of laminitis treatment as determining the repairing cell populations could contribute to the discovery of novel therapeutic targets and agents including and cell‐based therapies for affected animals.
Collapse
Affiliation(s)
- Krzysztof Marycz
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland. .,Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland.
| | - Ariadna Pielok
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland
| | - Katarzyna Kornicka-Garbowska
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland.,Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland
| |
Collapse
|
4
|
The Potential of Nail Mini-Organ Stem Cells in Skin, Nail and Digit Tips Regeneration. Int J Mol Sci 2021; 22:ijms22062864. [PMID: 33799809 PMCID: PMC7998429 DOI: 10.3390/ijms22062864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.
Collapse
|
5
|
Development and Maintenance of Epidermal Stem Cells in Skin Adnexa. Int J Mol Sci 2020; 21:ijms21249736. [PMID: 33419358 PMCID: PMC7766199 DOI: 10.3390/ijms21249736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs.
Collapse
|
6
|
Bhoopalam M, Garza LA, Reddy SK. Wound Induced Hair Neogenesis - A Novel Paradigm for Studying Regeneration and Aging. Front Cell Dev Biol 2020; 8:582346. [PMID: 33178696 PMCID: PMC7593594 DOI: 10.3389/fcell.2020.582346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023] Open
Abstract
Hair follicles are the signature dermal appendage of mammals. They can be thought of as mini-organs with defined polarity, distinct constituent cell types, dedicated neurovascular supply, and specific stem cell compartments. Strikingly, some mammals show a capacity for adult hair follicle regeneration in a phenomenon known as wound-induced hair neogenesis (WIHN). In WIHN functional hair follicles reemerge during healing of large cutaneous wounds, and they can be counted to provide an index of regeneration. While age-related decline in hair follicle number and cycling are widely appreciated in normal physiology, it is less clear whether hair follicle regeneration also diminishes with age. WIHN provides an extraordinary quantitative system to address questions of mammalian regeneration and aging. Here we review cellular and molecular underpinnings of WIHN, explore known age-related changes to these elements, and present unanswered questions for future exploration.
Collapse
Affiliation(s)
- Myan Bhoopalam
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Yu Y, Cui H, Zhang D, Liang B, Chai Y, Wen G. Human nail bed‐derived decellularized scaffold regulates mesenchymal stem cells for nail plate regeneration. J Tissue Eng Regen Med 2019; 13:1770-1778. [PMID: 31278843 DOI: 10.1002/term.2927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/01/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yaling Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Demin Zhang
- Zhejiang Province's Key Laboratory of 3D Printing and EquipmentZhejiang University Hangzhou China
| | - Bo Liang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yimin Chai
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|