1
|
Fan YN, Chi X, Yan L, Pu ZY, Yang JJ, Zhang YN. Lycium barbarum polysaccharides regulate the gut microbiota to modulate metabolites in high-fat diet-induced obese rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1115-1129. [PMID: 38952165 DOI: 10.1080/10286020.2024.2355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/03/2024]
Abstract
Lycium Barbarum Polysaccharides (LBP) can benefit lipid parameters such as total cholesterol, triglyceride, and high-density lipoprotein levels and upregulate the level of Firmicutes, increase the diversity of gut microbiota and reduce metabolic disorders, finally relieving weight gain of obese rats. But it cannot reverse the outcome of obesity. Over 30 differential metabolites and four pathways are altered by LBP.
Collapse
Affiliation(s)
- Yan-Na Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Xi Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Zhi-Yu Pu
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Nan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Zhao W, Li B, Hao J, Sun R, He P, Lv H, He M, Shen J, Han Y. Therapeutic potential of natural products and underlying targets for the treatment of aortic aneurysm. Pharmacol Ther 2024; 259:108652. [PMID: 38657777 DOI: 10.1016/j.pharmthera.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Aortic aneurysm is a vascular disease characterized by irreversible vasodilatation that can lead to dissection and rupture of the aortic aneurysm, a life-threatening condition. Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are two main types. The typical treatments for aortic aneurysms are open surgery and endovascular aortic repair, which are only indicated for more severe patients. Most patients with aneurysms have an insidious onset and slow progression, and there are no effective drugs to treat this stage. The inability of current animal models to perfectly simulate all the pathophysiological states of human aneurysms may be the key to this issue. Therefore, elucidating the molecular mechanisms of this disease, finding new therapeutic targets, and developing effective drugs to inhibit the development of aneurysms are the main issues of current research. Natural products have been applied for thousands of years to treat cardiovascular disease (CVD) in China and other Asian countries. In recent years, natural products have combined multi-omics, computational biology, and integrated pharmacology to accurately analyze drug components and targets. Therefore, the multi-component and multi-target complexity of natural products have made them a potentially ideal treatment for multifactorial diseases such as aortic aneurysms. Natural products have regained popularity worldwide. This review provides an overview of the known natural products for the treatment of TAA and AAA and searches for potential cardiovascular-targeted natural products that may treat TAA and AAA based on various cellular molecular mechanisms associated with aneurysm development.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Bufan Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jinjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ruochen Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Peng He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyu Lv
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Mou He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jie Shen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yantao Han
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
5
|
Gadanec LK, Andersson U, Apostolopoulos V, Zulli A. Glycyrrhizic Acid Inhibits High-Mobility Group Box-1 and Homocysteine-Induced Vascular Dysfunction. Nutrients 2023; 15:3186. [PMID: 37513606 PMCID: PMC10383373 DOI: 10.3390/nu15143186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) worsens cardiovascular outcomes by impairing vascular function and promoting chronic inflammation via release of danger-associated molecular patterns, such as high-mobility group box-1 (HMGB-1). Elevated levels of HMGB-1 have recently been reported in patients with HHcy. Therefore, targeting HMGB-1 may be a potential therapy to improve HHcy-induced cardiovascular pathologies. This study aimed to further elucidate HMGB-1's role during acute HHcy and HHcy-induced atherogenesis and to determine if inhibiting HMGB-1 with glycyrrhizic acid (Glyz) improved vascular function. Male New Zealand White rabbits (n = 25) were placed on either a standard control chow (CD; n = 15) or atherogenic diet (AD; n = 10) for 4 weeks. Rabbit serum and Krebs taken from organ bath studies were collected to quantify HMGB-1 levels. Isometric tension analysis was performed on abdominal aorta (AA) rings from CD and AD rabbits. Rings were incubated with homocysteine (Hcy) [3 mM] for 60 min to induce acute HHcy or rhHMGB-1 [100 nM]. Vascular function was assessed by relaxation to cumulative doses of acetylcholine. Markers of vascular dysfunction and inflammation were quantified in the endothelium, media, and adventitia of AA rings. HMGB-1 was significantly upregulated in serum (p < 0.0001) and Krebs (p < 0.0001) after Hcy exposure or an AD. Incubation with Hcy (p < 0.0001) or rhHMGB-1 (p < 0.0001) and an AD (p < 0.0001) significantly reduced relaxation to acetylcholine, which was markedly improved by Glyz. HMGB-1 expression was elevated (p < 0.0001) after Hcy exposure and AD (p < 0.0001) and was normalized after Glyz treatment. Moreover, markers of vascular function, cell stress and inflammation were also reduced after Glyz. These results demonstrate that HMGB-1 has a central role during HHcy-induced vascular dysfunction and inhibiting it with Glyz could be a potential treatment option for cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Vasso Apostolopoulos
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
6
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Ren L, Chen S, Yao D, Yan H. OxLDL-stimulated macrophage exosomes promote proatherogenic vascular smooth muscle cell viability and invasion via delivering miR-186-5p then inactivating SHIP2 mediated PI3K/AKT/mTOR pathway. Mol Immunol 2022; 146:27-37. [PMID: 35421738 DOI: 10.1016/j.molimm.2022.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
Abstract
The current study aimed to investigate the implication of microRNA (miRNA) profile in the linkage between oxidized low-density-lipoprotein (oxLDL)-stimulated-macrophages (MФ) exosomes and vascular smooth muscle cells (VSMCs) during atherosclerosis. VSMCs were treated by oxLDL-stimulated-MФ with/without GW4869. MiRNA profile in oxLDL-stimulated-MФ and untreated-MФ was detected by microarray, then candidate miRNAs were proposed to RT-qPCR and functional validation in VSMCs. MiR-186-5p mimic/inhibitor was transfected into oxLDL-stimulated-MФ, then its exosomes were used to VSMCs. Subsequently, miR-186-5p, SHIP2 and PI3K/AKT/mTOR pathway were modified alone or in combination in VSMCs. VSMCs viability, invasion and apoptosis were detected. OxLDL-stimulated-MФ induced VSMCs viability, invasion, but repressed apoptosis (all P < 0.01); while after GW4869 treatment to delete exosomes, its effect was weakened (all P < 0.05). Totally 45 dysregulated miRNAs were identified in oxLDL-stimulated-MФ versus untreated-MФ. The top-three dysregulated miRNAs (miR-186-5p, miR-21-5p, miR-320b) were elevated in VSMCs after oxLDL-stimulated-MФ treatment (all P < 0.001); while only miR-186-5p mimic greatly enhanced VSMCs viability and invasion (both P < 0.01). Furthermore, miR-186-5p-overexpressed oxLDL-stimulated-MФ exosomes promoted VSMCs viability, invasion, repressed apoptosis, while miR-186-5p-knockdown oxLDL-stimulated-MФ exosomes exhibited opposite effect (all P < 0.05). MiR-186-5p negatively regulated SHIP2 in VSMCs and bound SHIP2 via luciferase-reporter-gene assay (all P < 0.05). SHIP2 overexpression decreased VSMCs viability, invasion, PI3K/AKT/mTOR pathway, increased apoptosis, and attenuated miR-186-5p-overexpression's effect on these functions (all P < 0.05). Besides, PI3K activator (740 Y-P) weakened SHIP2-overexpression's effect on VSMCs viability, invasion and apoptosis (all P < 0.05). In conclusion, oxLDL-stimulated-MФ exosomes deliver miR-186-5p to inactivate SHIP2 mediated PI3K/AKT/mTOR pathway, then promote cell viability and invasion in VSMCs to accelerate atherosclerosis.
Collapse
Affiliation(s)
- Lingyun Ren
- Anesthesiology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430013, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430013, China
| | - Dan Yao
- Anesthesiology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430013, China
| | - Hong Yan
- Anesthesiology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430013, China.
| |
Collapse
|
8
|
Mu D, Li D, Li J, Yu H, Chen W, Liang J, Wang D, Li A, Qing Z, Zhang B. Long non‐codingRNA HULCprotects against atherosclerosis via inhibition ofPI3K/AKTsignaling pathway. IUBMB Life 2020. [DOI: 10.1002/iub.2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Mu
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Danyan Li
- Department of Radiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing China
| | - Jianhui Li
- Department of Cardiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing China
| | - Hongming Yu
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Wenping Chen
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Jing Liang
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Dongmei Wang
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Aimei Li
- Department of Nuclear Medicine Drum Tower hospital Nanjing, Jiangsu China
| | - Zhao Qing
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Bing Zhang
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| |
Collapse
|