1
|
Fernández-Solà J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients 2020; 12:E572. [PMID: 32098364 PMCID: PMC7071520 DOI: 10.3390/nu12020572] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic-dilated Cardiomyopathy (ACM) is the most prevalent form of ethanol-induced heart damage. Ethanol induces ACM in a dose-dependent manner, independently of nutrition, vitamin, or electrolyte disturbances. It has synergistic effects with other heart risk factors. ACM produces a progressive reduction in myocardial contractility and heart chamber dilatation, leading to heart failure episodes and arrhythmias. Pathologically, ethanol induces myocytolysis, apoptosis, and necrosis of myocytes, with repair mechanisms causing hypertrophy and interstitial fibrosis. Myocyte ethanol targets include changes in membrane composition, receptors, ion channels, intracellular [Ca2+] transients, and structural proteins, and disrupt sarcomere contractility. Cardiac remodeling tries to compensate for this damage, establishing a balance between aggression and defense mechanisms. The final process of ACM is the result of dosage and individual predisposition. The ACM prognosis depends on the degree of persistent ethanol intake. Abstinence is the preferred goal, although controlled drinking may still improve cardiac function. New strategies are addressed to decrease myocyte hypertrophy and interstitial fibrosis and try to improve myocyte regeneration, minimizing ethanol-related cardiac damage. Growth factors and cardiomyokines are relevant molecules that may modify this process. Cardiac transplantation is the final measure in end-stage ACM but is limited to those subjects able to achieve abstinence.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Internal Medicine Department, Hospital Clínic, Institut de Recerca August Pi i Sunyer (IDIBAPS), University of Barcelona, 08007 Catalunya, Spain;
- Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Ouyang S, Chen W, Zeng G, Lei C, Tian G, Zhu M, Liu Y, Yang M. MicroRNA-183-3p up-regulated by vagus nerve stimulation mitigates chronic systolic heart failure via the reduction of BNIP3L-mediated autophagy. Gene 2019; 726:144136. [PMID: 31629817 DOI: 10.1016/j.gene.2019.144136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Chronic systolic heart failure (CSHF) was a complex syndrome. Recently, vagus nerve stimulation (VNS), a novel treatment method, has emerged for the treatment of CSHF. therefore the aim of this study was to explore the possible mechanism of VNS treatment alleviating CSHF in rats. Firstly, we found after VNS treatment for 72 h, the level of B-type natriuretic peptide in VNS group was lower than that in CSHF group. In addition, VNS treatment induced the elevated left ventricular ejection fraction level, reduced left ventricular end diastolic volume and left ventricular end systolic volume level in VNS group, suggesting a mitigation of CSHF by VNS. Then we found the level of miR-183-3p in CSHF group was much lower than that in VNS group by High-throughput sequencing. The further results indicated that Bcl-2 interacting protein 3 like (BNIP3L) was identified as the target gene of miR-183-3p, and the expression of BNIP3L was notably reduced in rats of VNS group compared with CSHF group. Moreover, the down-regulated expression of miR-183-3p increased BNIP3L-mediated autophagy in rats of CSHF group compared with VNS group. Further mechanism findings demonstrated that up-regulation of miR-183-3p reduced the expression of BNIP3L, while down-regulation of miR-183-3p facilitated the expression of BNIP3L in H9c2 cells. miR-183-3p could also regulate autophagy by targeting BNIP3L in vitro, which was manifested by overexpression of miR-183-3p to inhibit BNIP3L-mediated autophagy. Our data demonstrated that VNS treatment benefited CSHF via the up-regulation of miRNA-183-3p, which reduced the BNIP3L-mediated autophagy, providing a new therapeutic direction for CSHF.
Collapse
Affiliation(s)
- Shao Ouyang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Wei Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China.
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Changcheng Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Guoping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Mingyan Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Min Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
3
|
Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC, Cowart LA. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J 2018; 32:1403-1416. [PMID: 29127192 DOI: 10.1096/fj.201700300r] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Accumulating data support a role for bioactive lipids as mediators of lipotixicity in cardiomyocytes. One class of these, the ceramides, constitutes a family of molecules that differ in structure and are synthesized by distinct enzymes, ceramide synthase (CerS)1-CerS6. Data support that specific ceramides and the enzymes that catalyze their formation play distinct roles in cell function. In a mouse model of diabetic cardiomyopathy, sphingolipid profiling revealed increases in not only the CerS5-derived ceramides but also in very long chain (VLC) ceramides derived from CerS2. Overexpression of CerS2 elevated VLC ceramides caused insulin resistance, oxidative stress, mitochondrial dysfunction, and mitophagy. Palmitate induced CerS2 and oxidative stress, mitophagy, and apoptosis, which were prevented by depletion of CerS2. Neither overexpression nor knockdown of CerS5 had any function in these processes, suggesting a chain-length dependent impact of ceramides on mitochondrial function. This concept was also supported by the observation that synthetic mitochondria-targeted ceramides led to mitophagy in a manner proportional to N-acyl chain length. Finally, blocking mitophagy exacerbated cell death. Taken together, our results support a model by which CerS2 and VLC ceramides have a distinct role in lipotoxicity, leading to mitochondrial damage, which results in subsequent adaptive mitophagy. Our data reveal a novel lipotoxic pathway through CerS2.-Law, B. A., Liao, X., Moore, K. S., Southard, A., Roddy, P., Ji, R., Szulc, Z., Bielawska, A., Schulze, P. C., Cowart, L. A. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Brittany A Law
- Department of Medicine-Cardiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xianghai Liao
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Kelsey S Moore
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Abigail Southard
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Patrick Roddy
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ruiping Ji
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Zdzislaw Szulc
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ala Bielawska
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA
| | - P Christian Schulze
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA.,Division of Cardiology, Angiology, Pneumology, and Intensive Medical Care, Department of Internal Medicine I, Friedrich-Schiller-University Jena, University of Jena, Jena, Germany; and
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Veteran's Affairs, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Gong X, Wang P, Wu Q, Wang S, Yu L, Wang G. Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnT(R141W) transgenic mouse of dilated cardiomyopathy. Eur J Cell Biol 2015; 95:57-67. [PMID: 26655348 DOI: 10.1016/j.ejcb.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Cell transplantation is a promising strategy in regenerative medicine. Beneficial effects of bone marrow mesenchymal stem cells (BM-MSCs) on heart disease have been widely reported. However, the MSCs in these studies have been mainly derived from autologous animals, and data on MSCs from human umbilical cord blood (UCB-MSCs) are still scarce. We investigated whether intramyocardial xenogeneic administration of UCB-MSCs is beneficial for preserving heart function in a cTnT(R141W) transgenic mouse of dilated cardiomyopathy (DCM). Cultured UCB-MSCs, which were identified by there morphology, differentiation and cell surface markers, were transplanted into cTnT(R141W) transgenic mice to examine apoptosis, fibrosis, vasculogenesis and the associated Akt pathway. Moreover, we measured the expression levels of VEGF and IGF-1, which are growth factors required for differentiation into cardiomyocytes, and are also involved in cardiac regeneration and improving heart function. One month after transplantation, MSCs significantly decreased chamber dilation and contractile dysfunction in the cTnT(R141W) mice. MSCs transplanted hearts showed a significant decrease in cardiac apoptosis and its regulation by the Akt pathway. Cardiac fibrosis and cytoplasmic vacuolisation were significantly attenuated in the MSCs group. Importantly, the levels of VEGF and IGF-1 were increased in the MSCs transplanted hearts. In vitro, the MSC-conditioned medium displayed anti-apoptotic activity in h9c2 cardiomyocytes subjected to hypoxia. These results further confirm the paracrine effects of MSCs. In conclusion, UCB-MSCs preserve cardiac function after intramyocardial transplantation in a DCM mouse, and this effect may be associated with reductions in cellular apoptosis, inflammation, hypertrophy and myocardial fibrosis; in addition to; up-regulation of Akt, VEGF and IGF-1; and enhanced angiogenesis.
Collapse
Affiliation(s)
- Xuhe Gong
- Emergency and Critical Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Pengbo Wang
- Emergency and Critical Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qingqing Wu
- Departments of Obstetrics and Gynaecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Sijia Wang
- Emergency and Critical Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Litian Yu
- Emergency and Critical Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Guogan Wang
- Emergency and Critical Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Departments of Obstetrics and Gynaecology, Fuxing Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Heart failure is a condition with significant morbidity and high mortality. It is likely to become unmanageable in the rapidly increasing aging population, due mainly to lack of effective treatment. Apoptosis is one of the major mechanisms causing cardiomyocyte loss in the failing hearts of both human patients and animal models. Thus, anti-apoptosis has been proposed as a provocative new concept for preventive and therapeutic strategies for heart failure. AREAS COVERED This review summarizes evidence that apoptotic cells in heart are not completely committed to death. They are likely to be targeted for reversing the cardiac dysfunction. Drugs that inhibit the progression of apoptosis help restore systolic function, reverse remodeling or even prevent heart failure. Inhibitors of caspase-3, the major executors of apoptosis, have been shown to hold great promises for apoptosis interruption in heart tissues. EXPERT OPINION Although the underlying cause and the pathophysiological role of apoptosis remain elusive, antiapoptotic therapy has emerged as an enigma for heart failure. Caspases promote the progressive loss of contractile function in heart failure by facilitating the degradation of myofibrillar proteins. Selective inhibition of the proteolytic functions of caspase-3 may represent an attractive approach to attenuate or reverse heart failure.
Collapse
Affiliation(s)
- Bo Yang
- The University of Hong Kong, Department of Pharmacology and Pharmacy, Level 2, Laboratory Block, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
6
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. J Cell Commun Signal 2009; 4:63-9. [PMID: 19898959 PMCID: PMC2821476 DOI: 10.1007/s12079-009-0080-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/06/2009] [Indexed: 01/12/2023] Open
Abstract
Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines.
Collapse
|
9
|
Abstract
An analysis of the clonality of cardiac progenitor cells (CPCs) and myocyte turnover in vivo requires genetic tagging of the undifferentiated cells so that the clonal marker of individual mother cells is traced in the specialized progeny. CPC niches in the atria and apex of the mouse heart were infected with a lentivirus carrying EGFP, and the destiny of the tagged cells was determined 1-5 months later. A common integration site was identified in isolated CPCs, cardiomyocytes, endothelial cells (ECs), and fibroblasts, documenting CPC self-renewal and multipotentiality and the clonal origin of the differentiated cell populations. Subsequently, the degree of EGFP-lentiviral infection of CPCs was evaluated 2-4 days after injection, and the number of myocytes expressing the reporter gene was measured 6 months later. A BrdU pulse-chasing protocol was also introduced as an additional assay for the analysis of myocyte turnover. Over a period of 6 months, each EGFP-positive CPC divided approximately eight times generating 230 cardiomyocytes; this value was consistent with the number of newly formed cells labeled by BrdU. To determine whether, human CPCs (hCPCs) are self-renewing and multipotent, these cells were transduced with the EGFP-lentivirus and injected after acute myocardial infarction in immunosuppressed rats. hCPCs, myocytes, ECs, and fibroblasts collected from the regenerated myocardium showed common viral integration sites in the human genome. Thus, our results indicate that the adult heart contains a pool of resident stem cells that regulate cardiac homeostasis and repair.
Collapse
|
10
|
Daneshmand MA, Milano CA. Surgical Treatments for Advanced Heart Failure. Surg Clin North Am 2009; 89:967-99, x. [DOI: 10.1016/j.suc.2009.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Khanna S, Park HA, Sen CK, Golakoti T, Sengupta K, Venkateswarlu S, Roy S. Neuroprotective and antiinflammatory properties of a novel demethylated curcuminoid. Antioxid Redox Signal 2009; 11:449-68. [PMID: 18724833 PMCID: PMC2787730 DOI: 10.1089/ars.2008.2230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 12/24/2022]
Abstract
A demethylated derivative of curcumin (DC; 67.8% bisdemethylcurcumin, 20.7% demethylmonodemethoxycurcumin, 5.86% bisdemethoxycurcumin, 2.58% demethylcurcumin) was prepared by using a 95% extract of curcumin (C(95); 72.2% curcumin, 18.8% monodemethoxycurcumin, 4.5% bisdemethoxycurcumin). DC increased glutathione and reduced reactive oxygen species (ROS) in HT4 neuronal cells. In a model of glutamate-induced death of HT4, DC was more effective than C(95) in neuroprotection. The protective effects of DC were retained even when DC was withdrawn from culture media after pretreatment. DC treatment, unlike an equal dose of C(95), completely spared glutamate-induced loss of cellular GSH. Both DC and C(95) prevented glutamate-induced elevation of cellular ROS but failed to attenuate glutamate-induced elevation of intracellular calcium. In human microvascular endothelial cells (HMECs) challenged with TNF-alpha, GeneChip analysis revealed that only a subcluster of 23 TNF-alpha-inducible genes were uniquely sensitive to C(95). In sharp contrast, 1,065 TNF-alpha-inducible genes were sensitive to DC but not to C(95), suggesting that DC was more effective in antagonizing the effects of TNF-alpha on HMECs. Functional analysis identified that the genes uniquely sensitive to DC belonged in four functional categories: cytokine-receptor interaction, focal adhesion, cell adhesion, and apoptosis. Real-time PCR as well as ELISA studies demonstrated that TNF-alpha-inducible CXCL10 and CXCL11 expression was sensitive to DC but not to C(95). Flow-cytometry studies recognized ICAM-1 and VCAM-1 as TNF-alpha-inducible adhesion molecules that were uniquely sensitive to DC. Taken together, DC exhibited promising neuroprotective and antiinflammatory properties that must be characterized in vivo.
Collapse
Affiliation(s)
- Savita Khanna
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Han-A Park
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Chandan K. Sen
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | | | | | | | - Sashwati Roy
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
13
|
Wu AHB. Novel Biomarkers of Cardiovascular Disease: Myeloperoxidase for Acute and/or Chronic Heart Failure? Clin Chem 2009; 55:12-4. [DOI: 10.1373/clinchem.2008.118208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, Address correspondence to the author at:, San Francisco General Hospital Clinical Chemistry Laboratory, 1001 Potrero Ave, San Francisco, CA, 94110, Fax 415-206-3045, E-mail
| |
Collapse
|
14
|
Droll L, Song YH, Krohn A, Muehlberg F, Alt E. TNFα protects tissue resident stem cells from H2O2 induced apoptosis through a novel NF-кB p50/p50 homodimer mediated signaling pathway. Biochem Biophys Res Commun 2008; 371:626-9. [DOI: 10.1016/j.bbrc.2008.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/15/2022]
|