1
|
Yoder MW, Wright NT, Borzok MA. Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk. Int J Mol Sci 2023; 24:11726. [PMID: 37511485 PMCID: PMC10380737 DOI: 10.3390/ijms241411726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.
Collapse
Affiliation(s)
- Micah W Yoder
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, USA
| | - Maegen A Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| |
Collapse
|
2
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
3
|
Cheema BS, Sabbah HN, Greene SJ, Gheorghiade M. Protein turnover in the failing heart: an ever-changing landscape. Eur J Heart Fail 2017; 19:1218-1221. [PMID: 28805968 DOI: 10.1002/ejhf.905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Baljash S Cheema
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Stephen J Greene
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Kunkel GH, Chaturvedi P, Thelian N, Nair R, Tyagi SC. Mechanisms of TFAM-mediated cardiomyocyte protection. Can J Physiol Pharmacol 2017; 96:173-181. [PMID: 28800400 DOI: 10.1139/cjpp-2016-0718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although mitochondrial transcription factor A (TFAM) is a protective component of mitochondrial DNA and a regulator of calcium and reactive oxygen species (ROS) production, the mechanism remains unclear. In heart failure, TFAM is significantly decreased and cardiomyocyte instability ensues. TFAM inhibits nuclear factor of activated T cells (NFAT), which reduces ROS production; additionally, TFAM transcriptionally activates SERCA2a to decrease free calcium. Therefore, decreasing TFAM vastly increases protease expression and hypertrophic factors, leading to cardiomyocyte functional decline. To examine this hypothesis, treatments of 1.0 μg of a TFAM vector and 1.0 μg of a CRISPR-Cas9 TFAM plasmid were administered to HL-1 cardiomyocytes via lipofectamine transfection. Western blotting and confocal microscopy analysis show that CRISPR-Cas9 knockdown of TFAM significantly increased proteases Calpain1, MMP9, and regulators Serca2a, and NFAT4 protein expression. CRISPR knockdown of TFAM in HL-1 cardiomyocytes upregulates degradation factors, leading to cardiomyocyte instability. Hydrogen peroxide oxidative stress decreased TFAM expression and increased Calpain1, MMP9, and NFAT4 protein expression. TFAM overexpression normalizes pathological hypertrophic factor NFAT4 in the presence of oxidative stress.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Nicholas Thelian
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Rohit Nair
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| |
Collapse
|
5
|
Berezin A. Epigenetics in heart failure phenotypes. BBA CLINICAL 2016; 6:31-7. [PMID: 27335803 PMCID: PMC4909708 DOI: 10.1016/j.bbacli.2016.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022]
Abstract
Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF.
Collapse
|