1
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Ueland T, Butt N, Lekva T, Ørn S, Manhenke C, Aukrust P, Larsen AI. High dose statin treatment reduces circulating Dickkopf-1 following acute myocardial infarction. Int J Cardiol 2024; 406:132035. [PMID: 38604450 DOI: 10.1016/j.ijcard.2024.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Secreted glycoproteins of the Dickkopf (DKK) family modify Wnt signaling and may influence plaque destabilization but their modulation by statins in MI patients is not known. METHODS We measured plasma DKK-1 and DKK-3 in patients with acute ST-segment elevation MI (STEMI) before percutaneous coronary intervention (PCI) and after 2 and 7 days and 2 months in patients receiving short-term high-dose (40 mg rosuvastatin, given before PCI; n = 25) and moderate dose (20 mg simvastatin, given the day after PCI; n = 34). In vitro modulation of DKK-1 in human umbilical vein endothelial cells (HUVECs) by statins were assessed. RESULTS (i) Patients receiving high dose rosuvastatin had a marked decline in DKK-1 at day 2 which was maintained throughout the study period. However, a more prevalent use of β-blockers in the simvastatin group, that could have contributed to higher DKK-1 levels in these patients. (ii) There was a strong correlation between baseline DKK-1 levels and change in DKK-1 from baseline to day 2 in patients receiving high dose rosuvastatin treatment. (iii) DKK-3 increased at day 2 but returned to baseline levels at 2 months in both treatment groups. (iv) Statin treatment dose-dependently decreased DKK-1 mRNA and protein levels in HUVEC. CONCLUSIONS Our findings suggest that high dose statin treatment with 40 mg rosuvastatin could persistently down-regulate DKK-1 levels, even at 2 months after the initial event in STEMI patients.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| | - Noreen Butt
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stein Ørn
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway; Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Cord Manhenke
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alf Inge Larsen
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
3
|
Gao YH, Wen DT, Du ZR, Wang JF, Wang SJ. Muscle Psn gene combined with exercise contribute to healthy aging of skeletal muscle and lifespan by adaptively regulating Sirt1/PGC-1α and arm pathway. PLoS One 2024; 19:e0300787. [PMID: 38753634 PMCID: PMC11098322 DOI: 10.1371/journal.pone.0300787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
The Presenilin (Psn) gene is closely related to aging, but it is still unclear the role of Psn genes in skeletal muscle. Here, the Psn-UAS/Mhc-GAL4 system in Drosophila was used to regulate muscle Psn overexpression(MPO) and muscle Psn knockdown(MPK). Drosophila were subjected to endurance exercise from 4 weeks to 5 weeks old. The results showed that MPO and exercise significantly increased climbing speed, climbing endurance, lifespan, muscle SOD activity, Psn expression, Sirt1 expression, PGC-1α expression, and armadillo (arm) expression in aged Drosophila, and they significantly decreased muscle malondialdehyde levels. Interestingly, when the Psn gene is knockdown by 0.78 times, the PGC-1α expression and arm expression were also down-regulated, but the exercise capacity and lifespan were increased. Furthermore, exercise combined with MPO further improved the exercise capacity and lifespan. MPK combined with exercise further improves the exercise capacity and lifespan. Thus, current results confirmed that the muscle Psn gene was a vital gene that contributed to the healthy aging of skeletal muscle since whether it was overexpressed or knocked down, the aging progress of skeletal muscle structure and function was slowed down by regulating the activity homeostasis of Sirt1/PGC-1α pathway and Psn/arm pathway. Exercise enhanced the function of the Psn gene to delay skeletal muscle aging by up regulating the activity of the Sirt1/PGC-1α pathway and Psn/arm pathway.
Collapse
Affiliation(s)
- Ying-hui Gao
- Ludong University, City Yantai, Shandong Province, China
| | - Deng-tai Wen
- Ludong University, City Yantai, Shandong Province, China
| | - Zhong-rui Du
- Ludong University, City Yantai, Shandong Province, China
| | - Jing-feng Wang
- Ludong University, City Yantai, Shandong Province, China
| | - Shi-jie Wang
- Ludong University, City Yantai, Shandong Province, China
| |
Collapse
|
4
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
5
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
6
|
Tao T, Du L, Teng P, Guo Y, Wang X, Hu Y, Zhao H, Xu Q, Ma L. Stem cell antigen-1 +cell-derived fibroblasts are crucial for cardiac fibrosis during heart failure. Cell Mol Life Sci 2023; 80:300. [PMID: 37740736 PMCID: PMC11073062 DOI: 10.1007/s00018-023-04957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
AIMS Mesenchymal stem cells (MSCs) present in the heart cannot differentiate into cardiomyocytes, but may play a role in pathological conditions. Therefore, the aim of this study was to scrutinise the role and mechanism of MSC differentiation in vivo during heart failure. METHODS AND RESULTS We performed single-cell RNA sequencing of total non-cardiomyocytes from murine and adult human hearts. By analysing the transcriptomes of single cells, we illustrated the dynamics of the cell landscape during the progression of heart hypertrophy, including those of stem cell antigen-1 (Sca1)+ stem/progenitor cells and fibroblasts. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone marrow-derived Sca1+ cells give rise to fibroblasts. Interestingly, partial depletion of Sca1+ cells alleviated the severity of myocardial fibrosis and led to a significant improvement in cardiac function in Sca1-CreERT2;Rosa26-eGFP-DTA mice. Similar non-cardiomyocyte cell composition and heterogeneity were observed in human patients with heart failure. Mechanistically, our study revealed that Sca1+ cells can transform into fibroblasts and affect the severity of fibrosis through the Wnt4-Pdgfra pathway. CONCLUSIONS Our study describes the cellular landscape of hypertrophic hearts and reveals that fibroblasts derived from Sca1+ cells with a non-bone marrow source largely account for cardiac fibrosis. These findings provide novel insights into the pathogenesis of cardiac fibrosis and have potential therapeutic implications for heart failure. Non-bone marrow-derived Sca1+ cells differentiate into fibroblasts involved in cardiac fibrosis via Wnt4-PDGFRα pathway.
Collapse
Affiliation(s)
- Tingting Tao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Peng Teng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yan Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Haige Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Kore RA, Jenkins SV, Jamshidi-Parsian A, Tackett AJ, Griffin RJ, Ayyadevara S, Mehta JL. Proteomic analysis of transcription factors involved in the alteration of ischemic mouse heart as modulated by MSC exosomes. Biochem Biophys Rep 2023; 34:101463. [PMID: 37125076 PMCID: PMC10130341 DOI: 10.1016/j.bbrep.2023.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Mesenchymal stem cell (MSC) exosomes have been found to attenuate cardiac systolic and diastolic dysfunction in animal models of ischemia. Exosomes carry a plethora of active and inactive proteins as their cargo, which are readily available to the recipient cell for use in intracellular signaling pathways-depending on the stresses, such as ischemia or hypoxia. Among the exosomal proteins are the often-overlooked cargo of transcriptional regulators. These transcriptional regulators influence the transcriptome and subsequently the proteome of recipient cell. Here, we report the transcriptional factors and regulators differentially modulated and their potential role in modulating cardiac function in MSC exosome treated ischemic mice hearts. Our analysis shows ischemic stress modulating transcriptional regulators and factors such as HSF1 and HIF1A in the infarct and peri-infarct areas of ischemic hearts which is mitigated by MSC exosomes. Similarly, STAT3 and SMAD3 are also modulated by MSC exosomes. Interestingly, NOTCH1 and β-catenin were detected in the ischemic hearts. The differential expression of these regulators and factors drives changes in various biological process governed in the ischemic cardiac cells. We believe these studies will advance our understanding of cardiac dysfunction occurring in the ischemic hearts and lay the groundwork for further studies on the modulation of cardiac function during ischemia by MSC exosomes.
Collapse
Affiliation(s)
- Rajshekhar A. Kore
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Corresponding author.
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jawahar L. Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Corresponding author.
| |
Collapse
|
8
|
Wang L, Du A, Lu Y, Zhao Y, Qiu M, Su Z, Shu H, Shen H, Sun W, Kong X. Peptidase Inhibitor 16 Attenuates Left Ventricular Injury and Remodeling After Myocardial Infarction by Inhibiting the HDAC1-Wnt3a-β-Catenin Signaling Axis. J Am Heart Assoc 2023; 12:e028866. [PMID: 37158154 DOI: 10.1161/jaha.122.028866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Background Myocardial infarction (MI) is a cardiovascular disease with high morbidity and mortality. PI16 (peptidase inhibitor 16), as a secreted protein, is highly expressed in heart diseases such as heart failure. However, the functional role of PI16 in MI is unknown. This study aimed to investigate the role of PI16 after MI and its underlying mechanisms. Methods and Results PI16 levels after MI were measured by enzyme-linked immunosorbent assay and immunofluorescence staining, which showed that PI16 was upregulated in the plasma of patients with acute MI and in the infarct zone of murine hearts. PI16 gain- and loss-of-function experiments were used to investigate the potential role of PI16 after MI. In vitro, PI16 overexpression inhibited oxygen-glucose deprivation-induced apoptosis in neonatal rat cardiomyocytes, whereas knockdown of PI16 exacerbated neonatal rat cardiomyocyte apoptosis. In vivo, left anterior descending coronary artery ligation was performed on PI16 transgenic mice, PI16 knockout mice, and their littermates. PI16 transgenic mice showed decreased cardiomyocyte apoptosis at 24 hours after MI and improved left ventricular remodeling at 28 days after MI. Conversely, PI16 knockout mice showed aggravated infract size and remodeling. Mechanistically, PI16 downregulated Wnt3a (wingless-type MMTV integration site family, member 3a)/β-catenin pathways, and the antiapoptotic role of PI16 was reversed by recombinant Wnt3a in oxygen-glucose deprivation-induced neonatal rat cardiomyocytes. PI16 also inhibited HDAC1 (class I histone deacetylase) expression, and overexpression HDAC1 abolished the inhibition of apoptosis and Wnt signaling of PI16. Conclusions In summary, PI16 protects against cardiomyocyte apoptosis and left ventricular remodeling after MI through the HDAC1-Wnt3a-β-catenin axis.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Anning Du
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Yan Lu
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Yunxi Zhao
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Ming Qiu
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- School of Medicine Southeast University Nanjing Jiangsu China
| | - Zhenyang Su
- School of Medicine Southeast University Nanjing Jiangsu China
| | - Huanyu Shu
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Hui Shen
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Wei Sun
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Xiangqing Kong
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Cardiovascular Research Center The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Suzhou China
| |
Collapse
|
9
|
Shen F, Wu C, Zhong X, Ma E, Peng J, Zhu W, Wo D, Ren DN. Liensinine prevents ischemic injury following myocardial infarction via inhibition of Wnt/β‑catenin signaling activation. Biomed Pharmacother 2023; 162:114675. [PMID: 37044026 DOI: 10.1016/j.biopha.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) is the leading cause of deaths worldwide, triggering widespread and irreversible damage to the heart. Currently, there are no drugs that can reverse ischemic damage to the myocardium and hence, finding novel therapeutic agents that can limit the extent of myocardial damage following MI is crucial. Liensinine (LSN) is a naturally derived bisbenzylisoquinoline alkaloid that is known to exhibit numerous antioxidative and cardiovascular beneficial effects. However, the role of LSN in MI-induced injury and its underlying mechanisms remain unexplored. PURPOSE Our study aims to evaluate the cardioprotective effects of LSN following MI and its underlying molecular mechanisms. METHODS We constructed murine models of MI in order to examine the potential cardioprotective effects and mechanisms of LSN in protecting against myocardial ischemic damage both in vivo and in vitro. RESULTS Administration with LSN strongly protected against cardiac injuries following MI by decreasing the extent of ischemic damage and improving cardiac function. Additionally, LSN was found to be a potent inhibitor of Wnt/β‑catenin signaling pathway. Hence, the beneficial effects of LSN in preventing oxidative and DNA damage following ischemia was due to its ability to inhibit aberrant activation of Wnt/β‑catenin signaling. CONCLUSIONS Our findings reveal for the first time a novel cardioprotective role of LSN during myocardial infarction and most notably, its ability to protect cardiomyocytes against oxidative stress-induced damage via inhibiting Wnt/β-catenin signaling. Our study therefore suggests new therapeutic potential of LSN or plants that contain the natural alkaloid LSN in ischemic heart diseases.
Collapse
Affiliation(s)
- Fang Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Celiang Wu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaomei Zhong
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - En Ma
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Dai R, Ren Y, Lv X, Chang C, He S, Li Q, Yang X, Ren L, Wei R, Su Q. MicroRNA-30e-3p reduces coronary microembolism-induced cardiomyocyte pyroptosis and inflammation by sequestering HDAC2 from the SMAD7 promoter. Am J Physiol Cell Physiol 2023; 324:C222-C235. [PMID: 36622073 DOI: 10.1152/ajpcell.00351.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study investigates the mechanism by which microRNA (miR)-30e-3p reduces coronary microembolism (CME)-induced cardiomyocyte pyroptosis and inflammation. Cardiac function tests, histological staining, and transmission electron microscopy were performed on CME-model rats injected with adeno-associated viral vectors. Cardiomyocytes were transfected 24 h before a cellular model of pyroptosis was established via treatment with 1 μg/mL lipopolysaccharide (LPS) for 4 h and 5 mM ATP for 30 min. Pyroptosis, inflammation, and Wnt/β-catenin signaling in cardiomyocytes were detected. Dual-luciferase reporter assays and/or RNA pull-down assays were performed to verify the binding of miR-30e-3p to HDAC2 mRNA or HDAC2 to the SMAD7 promoter. Chromatin immunoprecipitation was used to assess the level of H3K27 acetylation at the SMAD7 promoter. miR-30e-3p and SMAD7 expression levels were downregulated and HDAC2 expression was upregulated with CME. The overexpression of miR-30e-3p restored cardiac functions in CME-model rats and reduced serum cTnI, IL-18, and IL-1β levels, microinfarcts, inflammatory cell infiltration, apoptosis, collagen content, and GSDMD-N, cleaved caspase-1, and NLRP3 expression in the myocardium, but these effects were reversed by SMAD7 knockdown. The overexpression of miR-30e-3p or knockdown of HDAC2 reduced LDH, IL-18, and IL-1β secretion, propidium iodide intake, and GSDMD-N, NLRP3, cleaved caspase-1, Wnt3a, Wnt5a, and β-catenin expression in the cardiomyocyte model. miR-30e-3p inhibited the expression of HDAC2 by binding HDAC2 mRNA. HDAC2 repressed the expression of SMAD7 by catalyzing H3K27 deacetylation at the SMAD7 promoter. miR-30e-3p, by binding HDAC2 to promote SMAD7 expression, reduces CME-induced cardiomyocyte pyroptosis and inflammation.
Collapse
Affiliation(s)
- Rixin Dai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Yanling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Xiangwei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Shirong He
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Xiheng Yang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Lei Ren
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Riming Wei
- College of Biotechnology, Guilin Medical University, Guilin, People's Republic of China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, People's Republic of China
| |
Collapse
|
11
|
Tian CX, Li MY, Shuai XX, Jiang F, Dong YL, Gui Y, Zhang ZL, Qin RJ, Kang ZY, Lin L, Sarapultsev A, Wu B, Luo SS, Hu DS. Berberine plays a cardioprotective role by inhibiting macrophage Wnt5a/β-catenin pathway in the myocardium of mice after myocardial infarction. Phytother Res 2023; 37:50-61. [PMID: 36218220 PMCID: PMC10092487 DOI: 10.1002/ptr.7592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023]
Abstract
Myocardial infarction (MI) is one of the diseases with high fatality rate. Berberine (BBR) is a monomer compound with various biological functions. And some studies have confirmed that BBR plays an important role in alleviating cardiomyocyte injury after MI. However, the specific mechanism is unclear. In this study, we induced a model of MI by ligation of the left anterior descending coronary artery and we surprisingly found that BBR significantly improved ventricular remodeling, with a minor inflammatory and oxidative stress injury, and stronger angiogenesis. Moreover, BBR inhibited the secretion of Wnt5a/β-catenin pathway in macrophages after MI, thus promoting the differentiation of macrophages into M2 type. In summary, BBR effectively improved cardiac function of mice after MI, and the potential protective mechanism was associated with the regulation of inflammatory responses and the inhibition of macrophage Wnt5a/β-catenin pathway in the infarcted heart tissues. Importantly, these findings supported BBR as an effective cardioprotective drug after MI.
Collapse
Affiliation(s)
- Chun-Xia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ming-Yue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xin-Xin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jiang
- Department of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ya-Lan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Li Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren-Jie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Kang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg, Russia
| | - Bin Wu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Shan-Shan Luo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| |
Collapse
|
12
|
Yao M, Wang J, Zhang J, Guo Y, Ni Z, Jia X, Feng H. Asiaticoside attenuates oxygen-glucose deprivation/reoxygenation-caused injury of cardiomyocytes by inhibiting autophagy. J Appl Toxicol 2022; 43:789-798. [PMID: 36523111 DOI: 10.1002/jat.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Asiaticoside is a natural triterpene compound derived from Centella asiatica, possessing confirmed cardioprotective property. However, the roles of asiaticoside in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-caused cardiomyocyte dysfunction remain largely obscure. Human cardiomyocyte AC16 cells were stimulated with OGD/R to mimic myocardial ischemia/reperfusion injury and treated with asiaticoside. Cytotoxicity was investigated by CCK-8 assay and lactate dehydrogenase (LDH) release analysis. Autophagy- and Wnt/β-catenin signaling-related protein levels were measured via western blotting. Asiaticoside (0-20 μM) did not induce cardiomyocyte cytotoxicity. Asiaticoside (20 μM) mitigated OGD/R-induced autophagy, cytotoxicity, oxidative stress, and myocardial injury. Rapamycin, an autophagy inductor, reversed the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury, whereas 3-methyadanine, an autophagy inhibitor, played an opposite effect. Asiaticoside (20 μM) attenuated OGD/R-induced Wnt/β-catenin signaling inactivation, which was reversed after transfection with si-β-catenin. Transfection with si-β-catenin attenuated the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury. In conclusion, asiaticoside protected against OGD/R-induced cardiomyocyte cytotoxicity, oxidative stress, and myocardial injury via blunting autophagy through activating the Wnt/β-catenin signaling, indicating the therapeutic potential of asiaticoside in myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Mingyan Yao
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China.,Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jie Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yifang Guo
- Cardiology Division in Geriatric Institute, Hebei Provincial People's Hospital, Shijiazhuang, China
| | - Zhiyu Ni
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xinwei Jia
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Huiping Feng
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
13
|
Liu J, Zhang R, Wang D, Lin Y, Bai C, Nie N, Gao S, Zhang Q, Chang H, Ren C. Elucidating the role of circNFIB in myocardial fibrosis alleviation by endogenous sulfur dioxide. BMC Cardiovasc Disord 2022; 22:492. [PMID: 36404310 PMCID: PMC9677687 DOI: 10.1186/s12872-022-02909-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND To investigate the role of circNFIB in the alleviation of myocardial fibrosis by endogenous sulfur dioxide (SO2). METHODS We stimulated cultured neonatal rat cardiac fibroblasts with transforming growth factor-β1 (TGF-β1) and developed an in vitro myocardial fibrosis model. Lentivirus vectors containing aspartate aminotransferase 1 (AAT1) cDNA were used to overexpress AAT1, and siRNA was used to silence circNFIB. The SO2, collagen, circNFIB, Wnt/β-catenin, and p38 MAPK pathways were examined in each group. RESULTS In the in vitro TGF-β1-induced myocardial fibrosis model, endogenous SO2/AAT1 expression was significantly decreased, and collagen levels in the cell supernatant and type I and III collagen expression, as well as α-SMA expression, were all significantly increased. TGF-β1 also significantly reduced circNFIB expression. AAT1 overexpression significantly reduced myocardial fibrosis while significantly increasing circNFIB expression. Endogenous SO2 alleviated myocardial fibrosis after circNFIB expression was blocked. We discovered that circNFIB plays an important role in the alleviation of myocardial fibrosis by endogenous SO2 by inhibiting the Wnt/β-catenin and p38 MAPK pathways. CONCLUSION Endogenous SO2 promotes circNFIB expression, which inhibits the Wnt/β-catenin and p38 MAPK signaling pathways, consequently alleviating myocardial fibrosis.
Collapse
Affiliation(s)
- Jia Liu
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ranran Zhang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dahai Wang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Lin
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Bai
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nana Nie
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Gao
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuye Zhang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Chang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongmin Ren
- grid.412521.10000 0004 1769 1119Department of orthopedic oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
He J, Wo D, Ma E, Wang Q, Chen J, Gao Q, Zhao Q, Shen F, Peng J, Zhu W, Ren DN. Huoxin pill prevents excessive inflammation and cardiac dysfunction following myocardial infarction by inhibiting adverse Wnt/β‑catenin signaling activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154293. [PMID: 35785558 DOI: 10.1016/j.phymed.2022.154293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is the most common cause of cardiac injury, resulting in widespread and irreversible damage to the heart. The incidence of MI gives rise to the excessive production of inflammatory cytokines that further promotes myocardial dysfunction. Wnt/β-catenin signaling pathway is adversely activated during MI and plays an important role in the modulation of the inflammatory response following tissue injury. Huoxin pill (HXP) is a Traditional Chinese Medicine formulation that has been long used in the treatment of cardiovascular diseases, however its mechanisms of cardioprotection remain unclear. METHODS We performed murine models of MI in order to model myocardial ischemic damage and examine the effect and underlying mechanism of HXP in protecting against myocardial ischemic injury. We further constructed conditional cardiomyocyte-specific β-catenin knockout mice and induced surgical MI in order to better understand the role of Wnt/β-catenin signaling following myocardial infarction in the adult heart. RESULTS HXP administration strongly protected against cardiac ischemic injury, improved cardiac function, and markedly decreased the expression of pro-inflammatory cytokines following MI. Nuclear activation of β‑catenin resulted in significantly increased nuclear translocation and activation of NF-κB. In contrast, cardiomyocyte-specific deletion of β-catenin decreased NF-κB activation and exhibited beneficial effects following ischemic injury. Hence, HXP protected against MI-induced ischemic injury and excessive inflammatory response via inhibiting Wnt/β‑catenin signaling. CONCLUSIONS Our study elucidated the role of HXP in protecting against ischemic myocardial injury via preventing MI-induced inflammatory response, which was mediated by its ability to inhibit adverse Wnt/β‑catenin signaling activation. Thus, our study provides the basis for the implementation of HXP as an effective therapeutic strategy in protecting against myocardial ischemic diseases.
Collapse
Affiliation(s)
- Jia He
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - En Ma
- Clinical and Translational Research Center, Research Institute of Heart Failure, Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Qing Wang
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Qian Gao
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Qiqin Zhao
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Fang Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China.
| |
Collapse
|
15
|
Downstream Signaling of Inflammasome Pathway Affects Patients' Outcome in the Context of Distinct Molecular Breast Cancer Subtypes. Pharmaceuticals (Basel) 2022; 15:ph15060651. [PMID: 35745570 PMCID: PMC9229152 DOI: 10.3390/ph15060651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammasomes are protein complexes involved in the regulation of different biological conditions. Over the past few years, the role of NLRP3 in different tumor types has gained interest. In breast cancer (BC), NLRP3 has been associated with multiple processes including epithelia mesenchymal transition, invasion and metastization. Little is known about molecular modifications of NLRP3 up-regulation. In this study, in a cohort of BCs, the expression levels of NLRP3 and PYCARD were analyzed in combination with CyclinD1 and MYC ones and their gene alterations. We described a correlation between the NLRP3/PYCARD axis and CyclinD1 (p < 0.0001). NLRP3, PYCARD and CyclinD1’s positive expression was observed in estrogen receptor (ER) and progesterone receptor (PgR) positive cases (p < 0.0001). Furthermore, a reduction of NLRP3 and PYCARD expression has been observed in triple negative breast cancers (TNBCs) with respect to the Luminal phenotypes (p = 0.017 and p = 0.0015, respectively). The association NLRP3+/CCND1+ or PYCARD+/CCND1+ was related to more aggressive clinicopathological characteristics and a worse clinical outcome, both for progression free survival (PFS) and overall survival (OS) with respect to NLRP3+/CCND1− or PYCARD+/CCND1− patients, both in the whole cohort and also in the subset of Luminal tumors. In conclusion, our study shows that the NLRP3 inflammasome complex is down-regulated in TNBC compared to the Luminal subgroup. Moreover, the expression levels of NLRP3 and PYCARD together with the alterations of CCND1 results in Luminal subtype BC’ss poor prognosis.
Collapse
|
16
|
Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. NATURE CARDIOVASCULAR RESEARCH 2022; 1:263-280. [PMID: 35959412 PMCID: PMC9364913 DOI: 10.1038/s44161-022-00028-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure represents a major cause of morbidity and mortality worldwide. Single-cell transcriptomics have revolutionized our understanding of cell composition and associated gene expression. Through integrated analysis of single-cell and single-nucleus RNA-sequencing data generated from 27 healthy donors and 18 individuals with dilated cardiomyopathy, here we define the cell composition of the healthy and failing human heart. We identify cell-specific transcriptional signatures associated with age and heart failure and reveal the emergence of disease-associated cell states. Notably, cardiomyocytes converge toward common disease-associated cell states, whereas fibroblasts and myeloid cells undergo dramatic diversification. Endothelial cells and pericytes display global transcriptional shifts without changes in cell complexity. Collectively, our findings provide a comprehensive analysis of the cellular and transcriptomic landscape of human heart failure, identify cell type-specific transcriptional programs and disease-associated cell states and establish a valuable resource for the investigation of human heart failure.
Collapse
|
17
|
Ferrannini E, Manca ML, Ferrannini G, Andreotti F, Andreini D, Latini R, Magnoni M, Williams SA, Maseri A, Maggioni AP. Differential Proteomics of Cardiovascular Risk and Coronary Artery Disease in Humans. Front Cardiovasc Med 2022; 8:790289. [PMID: 35187107 PMCID: PMC8855064 DOI: 10.3389/fcvm.2021.790289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundProteomics of atypical phenotypes may help unravel cardiovascular disease mechanisms.AimWe aimed to prospectively screen the proteome of four types of individuals: with or without coronary artery disease (CAD), each with or without multiple risk factors. Associations with individual risk factors and circulating biomarkers were also tested to provide a functional context to the protein hits.Materials and MethodsThe CAPIRE study (ClinicalTrials.gov Identifier: NCT02157662) is a cross-sectional study aimed at identifying possible new mechanisms promoting or protecting against atherothrombosis. Quantification (by aptamer technology), ranking (using partial least squares), and correlations (by multivariate regression) of ~5000 plasma proteins were performed in consecutive individuals aged 45–75 years, without previous cardiovascular disease, undergoing computed tomography angiography for suspected CAD, showing either >5/16 atherosclerotic segments (CAD+) or completely clean arteries (CAD−) and either ≤ 1 risk factor (RF+) or ≥3 risk factors (RF−) (based on history, blood pressure, glycemia, lipids, and smoking).ResultsOf 544 individuals, 39% were atypical (93 CAD+/RF−; 120 CAD−/RF+) and 61% typical (102 CAD+/RF+; 229 CAD−/RF−). In the comparison with CAD+/RF− adjusted for sex and age, CAD−/RF+ was associated with increased atrial myosin regulatory light chain 2 (MYO) and C-C motif chemokine-22 (C-C-22), and reduced protein shisa-3 homolog (PS-3) and platelet-activating factor acetylhydrolase (PAF-AH). Extending the analysis to the entire cohort, an additional 8 proteins were independently associated with CAD or RF; by logistic regression, the 12-protein panel alone discriminated the four groups with AUCROC's of 0.72–0.81 (overall p = 1.0e−38). Among them, insulin-like growth factor binding protein-3 is positively associated with RF, lower BMI, and HDL-cholesterol, renin with CAD higher glycated hemoglobin HbA1c, and smoking.ConclusionsIn a CCTA-based cohort, four proteins, involved in opposing vascular processes (healing vs. adverse remodeling), are specifically associated with low CAD burden in high CV-risk individuals (high MYO and C-C-22) and high CAD burden in low-risk subjects (high PS-3 and PAF-AH), in interaction with BMI, smoking, diabetes, HDL-cholesterol, and HbA1c. These findings could contribute to a deeper understanding of the atherosclerotic process beyond traditional risk profile assessment and potentially constitute new treatment targets.
Collapse
Affiliation(s)
- Ele Ferrannini
- Consiglio Nazionale Delle Ricerche (CNR) Institute of Clinical Physiology, Pisa, Italy
- *Correspondence: Ele Ferrannini
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Ferrannini
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Felicita Andreotti
- Institute of Cardiology, Fondazione Policlinico Universitario Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Daniele Andreini
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Roberto Latini
- Mario Negri Institute of Pharmacological Research-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Marco Magnoni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Stephen A. Williams
- Clinical Research and Development, SomaLogic Inc., Boulder, CO, United States
| | | | - Aldo P. Maggioni
- Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO) Research Center, Heart Care Foundation, Florence, Italy
| |
Collapse
|
18
|
Koelwyn GJ, Aboumsallem JP, Moore KJ, de Boer RA. Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. J Mol Cell Cardiol 2022; 163:1-8. [PMID: 34582824 PMCID: PMC8816816 DOI: 10.1016/j.yjmcc.2021.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 02/09/2023]
Abstract
The field of cardio-oncology has emerged in response to the increased risk of cardiovascular disease (CVD) in patients with cancer. However, recent studies suggest a more complicated CVD-cancer relationship, wherein development of CVD, either prior to or following a cancer diagnosis, can also lead to increased risk of cancer and worse outcomes for patients. In this review, we describe the current evidence base, across epidemiological as well as preclinical studies, which supports the emerging concept of 'reverse-cardio oncology', or CVD-induced acceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Graeme J. Koelwyn
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada,Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver Canada
| | - Joseph Pierre Aboumsallem
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Kathryn J. Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands.,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| |
Collapse
|
19
|
Bahie A, Abdalbary MM, El-Sayed DY, Elzehery R, El-Said G, El-Kannishy G, Abd El Wahab AM. Relation of Wnt Signaling Pathway Inhibitors (Sclerostin and Dickkopf-1) to Left Ventricular Mass Index in Maintenance Hemodialysis Patients. Int J Nephrol 2021; 2021:2439868. [PMID: 34603797 PMCID: PMC8483936 DOI: 10.1155/2021/2439868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 09/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is common in hemodialysis (HD) patients. It predicts poor prognosis. Several inhibitors regulate Wnt canonical pathways like Dickkopf-related protein-1 (Dkk-1) and sclerostin. OBJECTIVES To investigate the relationship between serum sclerostin, Dkk-1, left ventricular mass (LVM), and LVM index (LVMI) in HD patients. METHODS This is a cross-sectional study including 65 HD patients in our HD unit. Patients were divided into two groups according to LVMI (group 1 with LVMI < 125 gm/m2 (N = 29) and group 2 with LVMI > 125 gm/m2 (N = 36)). Echocardiographic evaluation of the LVM, aortic, and mitral valves calcification (AVC and MVC) was done. Serum levels of sclerostin and Dkk-1 and patients' clinical and biochemical data were recorded. RESULTS Group 2 showed significantly higher age, blood pressure, AVC, and MVC and significantly lower hemoglobin, sclerostin, and Dkk-1 levels. LVM and LVMI had a significant linear negative correlation to both serum sclerostin and Dkk-1 (r = -0.329 and -0.257, P=0.01 and 0.046 for LVM; r = -0.427 and -0.324, P=0.001 and 0.012 for LVMI, resp.). Serum Dkk-1 was an independent negative indicator for LVM and LVMI in multiple regression analyses (P=0.003 and 0.041 with 95% CI = -0.963 to -0.204 and -0.478 to -0.010, resp.). CONCLUSION Serum sclerostin and Dkk-1 were significantly lower in HD patients with increased LVMI > 125 gm/m2, and both had a significant linear negative correlation with LVM and LVMI. Dkk-1 was a significant negative independent indicator for LVM and LVMI in HD patients.
Collapse
Affiliation(s)
- Ahmed Bahie
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Mohamed M Abdalbary
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Dalia Younis El-Sayed
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Rasha Elzehery
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Ghada El-Said
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ghada El-Kannishy
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ahmed M Abd El Wahab
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
20
|
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:11. [PMID: 33791915 PMCID: PMC8012441 DOI: 10.1186/s13619-020-00072-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs, whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance regeneration in mammals and design legitimate therapeutic strategies.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lixia Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
21
|
Sfrp1 protects against acute myocardial ischemia (AMI) injury in aged mice by inhibiting the Wnt/β-catenin signaling pathway. J Cardiothorac Surg 2021; 16:12. [PMID: 33468190 PMCID: PMC7814560 DOI: 10.1186/s13019-020-01389-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aged patients suffering from acute myocardial ischemia (AMI) exhibit an increased mortality rate and worse prognosis, and a more effective treatment is currently in need. In the present study, we investigated potent targets related to Wnt/β-catenin pathway deregulation for AMI injury treatment. METHODS In the present study, AAV-Sfrp1 was transduced into the myocardium of aged mice, and an AMI model was established in these aged mice to study the effect and molecular mechanism of Sfrp1 overexpression on AMI-induced injury. RESULTS The results showed that Sfrp1 was successfully overexpressed in the myocardium of aged mice and remarkably reduced Wnt/β-catenin pathway activity in aged mice after AMI, effectively reducing the degree of myocardial fibrosis, inhibiting cardiomyocyte apoptosis, and improving cardiac function. We revealed that the exogenous introduction of Sfrp1 could be considered a promising strategy for improving post-AMI injury in aged mice by inhibiting Wnt/β-catenin pathway activity. CONCLUSIONS In conclusion, the Wnt/β-catenin pathway potentially represents a key target in AMI in aged mice. Sfrp1 might be used as a small molecule gene therapy drug to improve heart function, reduce the degree of myocardial fibrosis, inhibit cardiomyocyte apoptosis and reduce AMI injury in aged mice by inhibiting the Wnt/β-catenin pathway, thereby effectively protecting aged hearts from AMI injury.
Collapse
|
22
|
Zhang C, Liu S, Yang M. Hepatocellular Carcinoma and Obesity, Type 2 Diabetes Mellitus, Cardiovascular Disease: Causing Factors, Molecular Links, and Treatment Options. Front Endocrinol (Lausanne) 2021; 12:808526. [PMID: 35002979 PMCID: PMC8733382 DOI: 10.3389/fendo.2021.808526] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which will affect more than a million people by the year 2025. However, current treatment options have limited benefits. Nonalcoholic fatty liver disease (NAFLD) is the fastest growing factor that causes HCC in western countries, including the United States. In addition, NAFLD co-morbidities including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) promote HCC development. Alteration of metabolites and inflammation in the tumor microenvironment plays a pivotal role in HCC progression. However, the underlying molecular mechanisms are still not totally clear. Herein, in this review, we explored the latest molecules that are involved in obesity, T2DM, and CVDs-mediated progression of HCC, as they share some common pathologic features. Meanwhile, several therapeutic options by targeting these key factors and molecules were discussed for HCC treatment. Overall, obesity, T2DM, and CVDs as chronic metabolic disease factors are tightly implicated in the development of HCC and its progression. Molecules and factors involved in these NAFLD comorbidities are potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Ming Yang,
| |
Collapse
|
23
|
Rafieemehr H, Maleki Behzad M, Azandeh S, Farshchi N, Ghasemi Dehcheshmeh M, Saki N. Chemo/radiotherapy-Induced Bone Marrow Niche Alterations. Cancer Invest 2020; 39:180-194. [PMID: 33225760 DOI: 10.1080/07357907.2020.1855353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow (BM) niche is a specific microenvironment for hematopoietic stem cells (HSCs) as well as non-hematopoietic cells. Evidence shows that chemo/radiotherapy can lead to the disruption of different properties of HSCs such as proliferation, differentiation, localization, self-renewa, and steady-state of cell populations. Investigations have shown that the deregulation of balance within the marrow cavity due to chemo/radiotherapy could lead to bone loss, abnormal hematopoiesis, and enhanced differentiation potential of mesenchymal stem cells towards the adipogenic lineage. Therefore, understanding the underlying mechanisms of chemo/radiotherapy induced BM niche changes may lead to the application of appropriate therapeutic agents to prevent BM niche defects. Highlights Chemo/radiotherapy disrupts the steady-state of bone marrow niche cells and result in deregulation of normal balance of stromal cell populations. Chemo/radiotherapy agents play a significant role in reducing of bone formation as well as fat accumulation in the bone marrow niche. Targeting molecular pathways may lead to recovery of bone marrow niches after chemo/radiotherapy.
Collapse
Affiliation(s)
- Hassan Rafieemehr
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masumeh Maleki Behzad
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion, Hamadan, Iran
| | - Saeed Azandeh
- Cellular and Molecular Research Center (CMRC), Department of Anatomical Sciences, Faculty of Medicin, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Niloofar Farshchi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
25
|
Shaher F, Qiu H, Wang S, Hu Y, Wang W, Zhang Y, Wei Y, AL-ward H, Abdulghani MAM, Alenezi SK, Baldi S, Zhou S. Associated Targets of the Antioxidant Cardioprotection of Ganoderma lucidum in Diabetic Cardiomyopathy by Using Open Targets Platform: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7136075. [PMID: 32775437 PMCID: PMC7397440 DOI: 10.1155/2020/7136075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.
Collapse
Affiliation(s)
- Fahmi Shaher
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hongbin Qiu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shuqiu Wang
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yu Hu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Weiqun Wang
- Department of Physiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yao Wei
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hisham AL-ward
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Mahfoudh A. M. Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Saudi Arabia
| | - Salem Baldi
- Department of Clinical Laboratory Diagnostics, College of Basic Medicine, Dalian Medical University, China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
26
|
Alvarez-Zavala M, Barreto-Vargas C, Torres-Reyes LA, De la Peña-Castro RF, Aguilar-Lemarroy A, Jave-Suarez LF. Exogenous Expression of WNT7A in Leukemia-Derived Cell Lines Induces Resistance to Chemotherapeutic Agents. Anticancer Agents Med Chem 2020; 20:1504-1514. [PMID: 32436833 DOI: 10.2174/1871520620666200521114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/08/2020] [Accepted: 02/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dysregulations of the WNT pathway are implicated in the malignant transformation of different types of neoplasia. WNT7A is expressed in normal peripheral lymphocytes, but is decreased in the tumoral counterpart. Furthermore, the treatment of leukemic cells with recombinant WNT7A decreases proliferation, suggesting its possible use as a therapeutic biomolecule. This study aimed to evaluate the concomitant action of WNT7A and different chemotherapeutic agents over proliferation and cell death of leukemia/ lymphoma derived cell lines. METHODS Ectopic expression of WNT7A was induced in CEM and BJAB cell lines by using a lentiviral system. RNA expression was analyzed by microarrays and qPCR, and protein expression was determined by Western Blot. Cell proliferation was measured by cell counting, metabolic activity by WST-1 assay, cell death and DNA content by flow cytometry. RESULTS WNT7A ectopic expression was shown to decrease cell proliferation, but the apoptosis rate of leukemic cells was not altered. Moreover, these cells acquired resistance to doxorubicin, vincristine and MG-132. Cell cycle analysis reveals a decrease in G1 and an increase in S and G2 phases with a further upregulation of senescence- associated genes. Microarray analysis reveals that most gene expression changes were related to cancer and metabolic associated pathways. All those changes appear to be independent of the WNT canonical pathway regulation. CONCLUSION WNT7A negatively regulates cell proliferation in leukemic cell lines and promotes resistance to chemotherapeutic agents by inducing a senescence-like phenotype independently of the WNT canonical pathway.
Collapse
Affiliation(s)
- Monserrat Alvarez-Zavala
- Instituto de Investigacion en Inmunodeficiencias y VIH, Departamento de Clínicas Medicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Christian Barreto-Vargas
- Division de Inmunologia, Centro de Investigacion Biomedica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Luis A Torres-Reyes
- Departamento de Biologia Molecular y Genomica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Roberto F De la Peña-Castro
- Division de Inmunologia, Centro de Investigacion Biomedica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Adriana Aguilar-Lemarroy
- Division de Inmunologia, Centro de Investigacion Biomedica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Luis F Jave-Suarez
- Division de Inmunologia, Centro de Investigacion Biomedica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
27
|
β-catenin promotes NLRP3 inflammasome activation via increasing the association between NLRP3 and ASC. Mol Immunol 2020; 121:186-194. [PMID: 32244067 DOI: 10.1016/j.molimm.2020.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/11/2020] [Accepted: 02/23/2020] [Indexed: 01/21/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain- containing protein 3) inflammasome is involved in diverse inflammatory diseases, so the activation of NLRP3 inflammasome needs to be tightly regulated to prevent excessive inflammation. However, the endogenous regulatory mechanisms of NLRP3 inflammasome are still less defined. Here, we report that β-catenin, which is the central mediator of the canonical Wnt/β-catenin signaling, promotes NLRP3 inflammasome activation. When we suppressed the expression of β-catenin by siRNA or pharmacological inhibitor, the NLRP3 inflammasome activation was impaired. Accordingly, β-catenin inhibitor attenuated LPS-induced systemic inflammation in vivo. Mechanistically, we found β-catenin interacted with NLRP3 and promoted the association between NLRP3 and ASC. Thus, our study revealed a novel role of β-catenin in NLRP3 inflammasome activation and suggest an endogenous crosstalk between Wnt/β-catenin signal and NLRP3 inflammasome.
Collapse
|
28
|
Blankesteijn WM. Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways. Mol Pharmacol 2019; 97:90-101. [PMID: 31757861 DOI: 10.1124/mol.119.118018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
Myocardial infarction is a frequent cardiovascular event and a major cause for cardiomyocyte loss. In adult mammals, cardiomyocytes are traditionally considered to be terminally differentiated cells, unable to proliferate. Therefore, the wound-healing response in the infarct area typically yields scar tissue rather than newly formed cardiomyocytes. In the last decade, several lines of evidence have challenged the lack of proliferative capacity of the differentiated cardiomyocyte: studies in zebrafish and neonatal mammals have convincingly demonstrated the regenerative capacity of cardiomyocytes. Moreover, multiple signaling pathways have been identified in these models that-when activated in adult mammalian cardiomyocytes-can reactivate the cell cycle in these cells. However, cardiomyocytes frequently exit the cell cycle before symmetric division into daughter cells, leading to polyploidy and multinucleation. Now that there is more insight into the reactivation of the cell cycle machinery, other prerequisites for successful symmetric division of cardiomyocytes, such as the control of sarcomere disassembly to allow cytokinesis, require more investigation. This review aims to discuss the signaling pathways involved in cardiomyocyte proliferation, with a specific focus on wingless/int-1 protein signaling. Comparing the conflicting results from in vitro and in vivo studies on this pathway illustrates that the interaction with other cells and structures around the infarct is likely to be essential to determine the outcome of these interventions. The extensive crosstalk with other pathways implicated in cardiomyocyte proliferation calls for the identification of nodal points in the cell signaling before cardiomyocyte proliferation can be moved forward toward clinical application as a cure of cardiac disease. SIGNIFICANCE STATEMENT: Evidence is mounting that proliferation of pre-existing cardiomyocytes can be stimulated to repair injury of the heart. In this review article, an overview is provided of the different signaling pathways implicated in cardiomyocyte proliferation with emphasis on wingless/int-1 protein signaling, crosstalk between the pathways, and controversial results obtained in vitro and in vivo.
Collapse
Affiliation(s)
- W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| |
Collapse
|
29
|
Guan YZ, Yin RX, Zheng PF, Deng GX, Liu CX, Wei BL. Potential molecular mechanism of ACE gene at different time points in STEMI patients based on genome-wide microarray dataset. Lipids Health Dis 2019; 18:184. [PMID: 31647035 PMCID: PMC6813054 DOI: 10.1186/s12944-019-1131-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Background This study aimed to investigate the angiotensin converting enzyme (ACE) co-expression genes and their pathways involved in ST-segment elevation myocardial infarction (STEMI) at different time points. Methods The array data set of GSE59867 was examined for the ACE co-expression genes in peripheral blood samples from 111 patients with STEMI at four time points (admission, discharge, and 1 and 6 months after MI). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Gene Ontology (GO) annotation and protein-protein interaction (PPI) of the co-expression genes were determined using online analytical tools. The Cytoscape software was used to create modules and hub genes. Results The number of biological processes (BP), cellular components (CC) and molecular functions (MF) was 43, 22 and 24 at admission; 18, 19 and 11 at discharge; 30, 37 and 21 at 1 month after MI; and 12, 19 and 14 at 6 months after MI; respectively. There were 6 BP, 8 CC and 4 MF enriched at every time point. The co-expression genes were substantially enriched in 12, 5, 6 and 14 KEGG pathways at the four time points, respectively, but no KEGG pathway was found to be common in all time points. We identified 132 intersectional co-expression genes (90 positive and 42 negative) from the four time points and 17 BP, 13 CC, 11 MF and 7 KEGG pathways were enriched. In addition, the PPI network contained 129 nodes and 570 edges, and only 1 module was identified to be significantly enriched in just 1 BP (chromatin-mediated maintenance of transcription). Conclusions The results of the present study showed that the ACE co-expression genes and their pathways involved in STEMI were significantly different at four different time points. These findings may be helpful for further understanding the functions and roles of ACE in different stages of STEMI, and providing reference for the treatment of STEMI.
Collapse
Affiliation(s)
- Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
30
|
Li Z, Zhu H, Liu C, Wang Y, Wang D, Liu H, Cao W, Hu Y, Lin Q, Tong C, Lu M, Sachinidis A, Li L, Peng L. GSK-3β inhibition protects the rat heart from the lipopolysaccharide-induced inflammation injury via suppressing FOXO3A activity. J Cell Mol Med 2019; 23:7796-7809. [PMID: 31503410 PMCID: PMC6815822 DOI: 10.1111/jcmm.14656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sepsis‐induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK‐3β is involved in the modulation of sepsis. However, the signalling details of GSK‐3β regulation in endotoxin lipopolysaccharide (LPS)‐induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK‐3β phosphorylation at its active site (Y216) and up‐regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK‐3β inhibitors and further reversed through β‐catenin knock‐down. This pharmacological inhibition of GSK‐3β attenuated the LPS‐induced cell injury via mediating β‐catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK‐3β suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS‐induced model was also blocked by inhibition of GSK‐3β, which curbed both ERK and NF‐κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP‐activated protein kinase (AMPK). Our results demonstrate that GSK‐3β inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.
Collapse
Affiliation(s)
- Zhigang Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huifang Zhu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenze Cao
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Tong
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Lu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Tang X, Tian J, Xie L, Ji Y. γ-catenin alleviates cardiac fibrosis through inhibiting phosphorylation of GSK-3β. J Biomed Res 2019; 0:1-9. [PMID: 31741464 DOI: 10.7555/jbr.33.20190070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cardiac fibrosis is a common pathological change of many cardiovascular diseases. β-catenin has been shown to promote fibrosis. However, the precise role of its homolog γ-catenin in the process of fibrosis remains largely unclear. In this study, we found that the expression of γ-catenin was significantly decreased in angiotensin Ⅱ (Ang Ⅱ)-induced cardiac fibrosis model, contrary to most reports of β-catenin. Overexpression of γ-catenin in cardiac fibroblasts (CFs) significantly inhibited the expression of α-smooth muscle actin (α-SMA), whereas knocking down the expression of γ-catenin with siRNA promoted the occurrence of cardiac fibrosis. Mechanistically, γ-catenin could bind to GSK-3β to inhibit the phosphorylation of GSK-3β, therefore preventing cardiac fibrosis. Our study shows that γ-catenin is an important protective factor in cardiac fibrosis, which provides a new potential target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaxin Tian
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|