1
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
2
|
Fisher SM, Murally AR, Rajabally Z, Almas T, Azhar M, Cheema FH, Malone A, Hasan B, Aslam N, Saidi J, O'Neill J, Hameed A. Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev 2024; 29:257-276. [PMID: 37999821 DOI: 10.1007/s10741-023-10371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Our understanding of the complex pathophysiology of Heart failure with preserved ejection fraction (HFpEF) is limited by the lack of a robust in vivo model. Existing in-vivo models attempt to reproduce the four main phenotypes of HFpEF; ageing, obesity, diabetes mellitus and hypertension. To date, there is no in vivo model that represents all the haemodynamic characteristics of HFpEF, and only a few have proven to be reliable for the preclinical evaluation of potentially new therapeutic targets. HFpEF accounts for 50% of all the heart failure cases and its incidence is on the rise, posing a huge economic burden on the health system. Patients with HFpEF have limited therapeutic options available. The inadequate effectiveness of current pharmaceutical therapeutics for HFpEF has prompted the development of device-based treatments that target the hemodynamic changes to reduce the symptoms of HFpEF. However, despite the potential of device-based solutions to treat HFpEF, most of these therapies are still in the developmental stage and a relevant HFpEF in vivo model will surely expedite their development process. This review article outlines the major limitations of the current large in-vivo models in use while discussing how these designs have helped in the development of therapy devices for the treatment of HFpEF.
Collapse
Affiliation(s)
- Shane Michael Fisher
- Health Sciences Centre, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Anjali Rosanna Murally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Zahra Rajabally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Talal Almas
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Faisal H Cheema
- Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, USA
| | - Andrew Malone
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Jemil Saidi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Jim O'Neill
- Department of Cardiology, Connolly Hospital, Blanchardstown, Dublin, Ireland.
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
3
|
Benincasa G, Napoli C. Unexplored horizons on sex bias and progression of heart failure with preserved ejection fraction. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:502-504. [PMID: 37486244 DOI: 10.1093/ehjcvp/pvad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Pz. Miraglia, 2, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Pz. Miraglia, 2, 80138 Naples, Italy
| |
Collapse
|
4
|
Liu XL, Wang GZ, Rui MP, Fan D, Zhang J, Zhu ZH, Perez R, Wang T, Yang LC, Lyu L, Zheng J, Wang G. Imaging characterization of myocardial function, fibrosis, and perfusion in a nonhuman primate model with heart failure-like features. Front Cardiovasc Med 2023; 10:1214249. [PMID: 37663419 PMCID: PMC10471131 DOI: 10.3389/fcvm.2023.1214249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The availability of a human-like chronic heart failure (HF) animal model was critical for affiliating development of novel therapeutic drug treatments. With the close physiology relatedness to humans, the non-human primate (NHP) HF model would be valuable to better understand the pathophysiology and pharmacology of HF. The purpose of this work was to present preliminary cardiac image findings using echocardiography and cardiovascular magnetic resonance (CMR) in a HF-like cynomolgus macaque model. Methods The NHP diet-induced model developed cardiac phenotypes that exhibited diastolic dysfunction with reduced left ventricular ejection fraction (LVEF) or preserved LVEF. Twenty cynomolgus monkeys with cardiac dysfunction were selected by echocardiography and subsequently separated into two groups, LVEF < 65% (termed as HFrEF, n = 10) and LVEF ≥ 65% with diastolic dysfunction (termed as HFpEF, n = 10). Another group of ten healthy monkeys was used as the healthy control. All monkeys underwent a CMR study to measure global longitudinal strain (GLS), myocardial extracellular volume (ECV), and late gadolinium enhancement (LGE). In healthy controls and HFpEF group, quantitative perfusion imaging scans at rest and under dobutamine stress were performed and myocardial perfusion reserve (MPR) was subsequently obtained. Results No LGE was observed in any monkey. Monkeys with HF-like features were significantly older, compared to the healthy control group. There were significant differences among the three groups in ECV (20.79 ± 3.65% in healthy controls; 27.06 ± 3.37% in HFpEF group, and 31.11 ± 4.50% in HFrEFgroup, p < 0.001), as well as for stress perfusion (2.40 ± 0.34 ml/min/g in healthy controls vs. 1.28 ± 0.24 ml/min/g in HFpEF group, p < 0.01) and corresponding MPR (1.83 ± 0.3 vs. 1.35 ± 0.29, p < 0.01). After adjusting for age, ECV (p = 0.01) and MPR (p = 0.048) still showed significant differences among the three groups. Conclusion Our preliminary imaging findings demonstrated cardiac dysfunction, elevated ECV, and/or reduced MPR in this HF-like NHP model. This pilot study laid the foundation for further mechanistic research and the development of a drug testing platform for distinct HF pathophysiology.
Collapse
Affiliation(s)
- Xing-Li Liu
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guan-Zhong Wang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Mao-Ping Rui
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Dong Fan
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zhang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Zheng-Hua Zhu
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Rosario Perez
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Tony Wang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Li-Chuan Yang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Liang Lyu
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in Saint Louis, St. Louis, MO, United States
| | - Gang Wang
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Rosalia L, Ozturk C, Wang SX, Quevedo-Moreno D, Saeed MY, Mauskapf A, Roche ET. Soft robotics-enabled large animal model of HFpEF hemodynamics for device testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550654. [PMID: 37547009 PMCID: PMC10402006 DOI: 10.1101/2023.07.26.550654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major challenge in cardiovascular medicine, accounting for approximately 50% of all cases of heart failure. Due to the lack of effective therapies for this condition, the mortality associated with HFpEF remains higher than that of most cancers. Despite the ongoing efforts, no medical device has yet received FDA approval. This is largely due to the lack of an in vivo model of the HFpEF hemodynamics, resulting in the inability to evaluate device effectiveness in vivo prior to clinical trials. Here, we describe the development of a highly tunable porcine model of HFpEF hemodynamics using implantable soft robotic sleeves, where controlled actuation of a left ventricular and an aortic sleeve can recapitulate changes in ventricular compliance and afterload associated with a broad spectrum of HFpEF hemodynamic phenotypes. We demonstrate the feasibility of the proposed model in preclinical testing by evaluating the hemodynamic response of the model post-implantation of an interatrial shunt device, which was found to be consistent with findings from in silico studies and clinical trials. This work addresses several of the limitations associated with previous models of HFpEF, such as their limited hemodynamic fidelity, elevated costs, lengthy development time, and low throughput. By showcasing exceptional versatility and tunability, the proposed platform has the potential to revolutionize the current approach for HFpEF device development and selection, with the goal of improving the quality of life for the 32 million people affected by HFpEF worldwide.
Collapse
|
6
|
Schreiber LM, Lohr D, Baltes S, Vogel U, Elabyad IA, Bille M, Reiter T, Kosmala A, Gassenmaier T, Stefanescu MR, Kollmann A, Aures J, Schnitter F, Pali M, Ueda Y, Williams T, Christa M, Hofmann U, Bauer W, Gerull B, Zernecke A, Ergün S, Terekhov M. Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research. Front Cardiovasc Med 2023; 10:1068390. [PMID: 37255709 PMCID: PMC10225557 DOI: 10.3389/fcvm.2023.1068390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.
Collapse
Affiliation(s)
- Laura M. Schreiber
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Steffen Baltes
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ibrahim A. Elabyad
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Theresa Reiter
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Aleksander Kosmala
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tobias Gassenmaier
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria R. Stefanescu
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alena Kollmann
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Julia Aures
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mihaela Pali
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Tatiana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin Christa
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Wolfgang Bauer
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Maxim Terekhov
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
7
|
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc 2022; 11:e026071. [PMID: 35904190 PMCID: PMC9375492 DOI: 10.1161/jaha.122.026071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi‐hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP‐related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.
Collapse
Affiliation(s)
- Alex N Smith
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Raffaele Altara
- Department of Pathology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France
| | - Daniel G Thomas
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Seungho Jun
- Division of Cardiology The Johns Hopkins Medical Institutions Baltimore MD
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Cardiology Clinic Rumeli Hospital Istanbul Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS.,Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|