1
|
La Rosa GRM, Pedullà E. Effectiveness of probiotics in apical periodontitis progression: A scoping review and implications for research. AUST ENDOD J 2023; 49 Suppl 1:528-536. [PMID: 36524834 DOI: 10.1111/aej.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
To synthesise the current knowledge on the effects of probiotics in apical periodontitis progression by a scoping review of animal and human studies. Reporting was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews. The literature search and screening was performed on PubMed and Scopus databases by two independent reviewers selecting human and animal studies that evaluated the effectiveness of probiotics in reducing the severity of apical periodontitis. Two animal studies with 3 publications met the eligibility criteria for qualitative synthesis. The most common probiotics were Lactobacillus rhamnosus and Lactobacillus acidophilus orally administered for gavage in Wistar rats with induced apical periodontitis. Overall, probiotics significantly reduced inflammation and bone resorption with an improvement in the apical periodontitis progression. Although results in animal studies are promising, the use of probiotics in apical periodontitis progression requires caution due to the insufficient available evidence.
Collapse
Affiliation(s)
- Giusy Rita Maria La Rosa
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Eugenio Pedullà
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Sufaru IG, Teslaru S, Pasarin L, Iovan G, Stoleriu S, Solomon SM. Host Response Modulation Therapy in the Diabetes Mellitus—Periodontitis Conjuncture: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14081728. [PMID: 36015357 PMCID: PMC9414216 DOI: 10.3390/pharmaceutics14081728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response of the host in periodontitis is the phenomenon that underlies the onset and evolution of periodontal destructive phenomena. A number of systemic factors, such as diabetes mellitus (DM), can negatively affect the patient with periodontitis, just as the periodontal disease can aggravate the status of the DM patient. Host response modulation therapy involves the use of anti-inflammatory and anti-oxidant products aimed at resolving inflammation, stopping destructive processes, and promoting periodontal healing, all important aspects in patients with high tissue loss rates, such as diabetic patients. This paper reviews the data available in the literature on the relationship between DM and periodontitis, the main substances modulating the inflammatory response (nonsteroidal anti-inflammatory drugs, sub-antimicrobial doses of doxycycline, or omega-3 fatty acids and their products, specialized pro-resolving mediators), as well as their application in diabetic patients.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Silvia Teslaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Liliana Pasarin
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Gianina Iovan
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
3
|
Zhang Y, Ding Y, Guo Q. Probiotic Species in the Management of Periodontal Diseases: An Overview. Front Cell Infect Microbiol 2022; 12:806463. [PMID: 35402306 PMCID: PMC8990095 DOI: 10.3389/fcimb.2022.806463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontal diseases are one of the most common chronic inflammatory diseases of the oral cavity, which are initiated and sustained by pathogenic plaque biofilms. Central to modern periodontology is the idea that dysbiosis of periodontal microecology and disorder of host inflammatory response gives rise to degradation of periodontal tissues together, which eventually leads to tooth loss, seriously affecting the life quality of patients. Probiotics were originally used to treat intestinal diseases, while in recent years, extensive studies have been exploring the utilization of probiotics in oral disease treatment and oral healthcare. Probiotic bacteria derived from the genera Lactobacillus, Bifidobacterium, Streptococcus, and Weissella are found to play an effective role in the prevention and treatment of periodontal diseases via regulating periodontal microbiota or host immune responses. Here, we review the research status of periodontal health-promoting probiotic species and their regulatory effects. The current issues on the effectiveness and safety of probiotics in the management of periodontal diseases are also discussed at last. Taken together, the use of probiotics is a promising approach to prevent and treat periodontal diseases. Nevertheless, their practical use for periodontal health needs further research and exploration.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Qiang Guo,
| |
Collapse
|
4
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Evaluation of the antibacterial effects and mechanism of Plantaricin 149 from Lactobacillus plantarum NRIC 149 on the peri-implantitis pathogens. Sci Rep 2021; 11:21022. [PMID: 34697350 PMCID: PMC8545926 DOI: 10.1038/s41598-021-00497-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
Peri-implantitis is a common reversible disease after tooth implantation, caused by a variety of pathogenic microorganisms. Based on non-surgical or surgical treatment principles, supplementation by local or systemic drugs might enhance treatment efficacy. Porphyromonas gingivalis (Pg) (ATCC 33,277) and Prevotella intermedius (Pi) (ATCC 25,611) were used as test strains. The effects of Pln 149 on the biofilm formation and growth of four periodontal pathogens were evaluated by RT-PCR, fluorescence microscopy, and scanning electron microscopy. The antibacterial mechanism was tested by the patch-clamp technique. The cytotoxicity of Pln 149 (125 µg/ml) to bone marrow stromal cell (BMSC) was assessed using an MTT assay. Pln 149 exhibited significant inhibitory effects on Pg and Pi (P < 0.05), with significant differences in the biofilm images of fluorescence microscope and scanning electron microscope (P < 0.05). Pln 149 could change the sodium channel currents and exerted no cytotoxicity on bone marrow stromal cell. Pln 149 could inhibit the biofilm formation and growth of periodontal pathogens. Considering the absence of antimicrobial resistance and cytotoxicity, we suggest that the Pln 149 from Lactobacillus plantarum 149 might be a promising option for managing peri-implantitis.
Collapse
|
6
|
Nguyen T, Brody H, Radaic A, Kapila Y. Probiotics for periodontal health-Current molecular findings. Periodontol 2000 2021; 87:254-267. [PMID: 34463979 PMCID: PMC8448672 DOI: 10.1111/prd.12382] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysbiosis of the oral microbiome is associated with a variety of oral and systemic diseases, including periodontal disease. Oral dysbiosis in periodontal disease leads to an exacerbated host immune response that induces progressive periodontal tissue destruction and ultimately tooth loss. To counter the disease‐associated dysbiosis of the oral cavity, strategies have been proposed to reestablish a “healthy” microbiome via the use of probiotics. This study reviews the literature on the use of probiotics for modifying the oral microbial composition toward a beneficial state that might alleviate disease progression. Four in vitro and 10 preclinical studies were included in the analysis, and these studies explored the effects of probiotics on cultured biofilm growth and bacterial gene expressions, as well as modulation of the host response to inflammation. The current molecular findings on probiotics provide fundamental evidence for further clinical research for the use of probiotics in periodontal therapy. They also point out an important caveat: Changing the biofilm composition might alter the normal oral flora that is beneficial and/or critical for oral health.
Collapse
Affiliation(s)
- Trang Nguyen
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanna Brody
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Alan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Gu X, Song LJ, Li LX, Liu T, Zhang MM, Li Z, Wang P, Li M, Zuo XL. Fusobacterium nucleatum Causes Microbial Dysbiosis and Exacerbates Visceral Hypersensitivity in a Colonization-Independent Manner. Front Microbiol 2020; 11:1281. [PMID: 32733392 PMCID: PMC7358639 DOI: 10.3389/fmicb.2020.01281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Microbial dysbiosis is closely associated with visceral hypersensitivity and is involved in the pathogenesis of irritable bowel syndrome (IBS), but the specific strains that play a key role have yet to be identified. Previous bioinformatic studies have demonstrated that Fusobacterium is a shared microbial feature between IBS patients and maternal separation (MS)-stressed rats. In this study, we assessed the potential role of Fusobacterium nucleatum (F. nucleatum) in the pathogenesis of IBS. Methods: Fecal samples of patients with diarrhea predominant-IBS (IBS-D) and healthy controls were obtained. An MS rat model was established to receive gavage of either F. nucleatum or normal saline. Visceral sensitivity was evaluated through colorectal distension test, and fecal microbiota was analyzed by 16S rRNA gene sequencing. F. nucleatum-specific IgA levels in fecal supernatants were assessed by western blotting. The antigen reacted with the specific IgA of F. nucleatum was identified by mass spectrometry and the construction of a recombinant Escherichia coli BL21 (DE3). Results: IBS-D patients showed a lower Shannon index and a higher abundance of Fusobacterium. The F. nucleatum-gavage was shown to exacerbate visceral hypersensitivity in MS rats, with both the F. nucleatum-gavage and MS causing a decreased Shannon index and a clear segregation of fecal microbiota. In addition, specific IgA against F. nucleatum was detected in fecal supernatants of both the F. nucleatum-gavaged rats and the IBS-D patients. The FomA protein, which is a major outer membrane protein of F. nucleatum, was confirmed to react with the specific IgA of F. nucleatum in fecal supernatants. Conclusion:Fusobacterium increased significantly in IBS-D patients, and F. nucleatum was involved in the pathogenesis of IBS by causing microbial dysbiosis and exacerbating visceral hypersensitivity in a colonization-independent manner. Meanwhile, F. nucleatum was found to induce an increase in specific secretory IgA through FomA.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Jin Song
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Tong Liu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming-Ming Zhang
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2020; 17:156-166. [PMID: 30546113 DOI: 10.1038/s41579-018-0129-6] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusobacterium nucleatum has long been found to cause opportunistic infections and has recently been implicated in colorectal cancer; however, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To address this dissonance, we explore the diversity and niches of fusobacteria and reconsider historic fusobacterial taxonomy in the context of current technology. We also undertake a critical reappraisal of fusobacteria with a focus on F. nucleatum as a mutualist, infectious agent and oncogenic microorganism. In this Review, we delve into recent insights and future directions for fusobacterial research, including the current genetic toolkit, our evolving understanding of its mechanistic role in promoting colorectal cancer and the challenges of developing diagnostics and therapeutics for F. nucleatum.
Collapse
Affiliation(s)
| | - Wendy S Garrett
- Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Becirovic A, Abdi-Dezfuli JF, Hansen MF, Lie SA, Vasstrand EN, Bolstad AI. The effects of a probiotic milk drink on bacterial composition in the supra- and subgingival biofilm: a pilot study. Benef Microbes 2018; 9:865-874. [PMID: 30041533 DOI: 10.3920/bm2018.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics can convert a dysbiotic bacterial environment into a healthy one. The aim of the present study was to assess the effect of daily intake of a probiotic milk drink on the composition of bacterial species in dental supra- and subgingival biofilms. Sixteen dental students were enrolled into this study with a crossover, within subject, design. The participants were asked to allow plaque accumulation by refraining from cleaning their molars during two separate periods, each lasting three weeks. Each period consisted of an initial professional dental cleaning procedure done at the university clinic, then a 3 week plaque accumulation period, followed by a return to the clinic for supra- and subgingival plaque sampling. The first period served as a control, and during the second plaque accumulation period the participants drank 200 ml probiotic milk beverage each day. The accumulated plaque removed at the end of the accumulation period was later tested against a panel of 20 oral bacterial species using the checkerboard method. Three weeks consumption of a probiotic beverage led to a significant reduction in 15 of 20 bacterial species present in supragingival plaque and a reduction in 4 of 20 bacterial species in subgingival plaque (all P<0.05). This study showed a favorable effect of probiotics on periodontopathic bacteria in dental biofilms. The potential influence of this kind of probiotic in prevention or treatment of periodontal inflammation deserves further study.
Collapse
Affiliation(s)
- A Becirovic
- 1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - J F Abdi-Dezfuli
- 1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - M F Hansen
- 1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - S A Lie
- 1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - E N Vasstrand
- 1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - A I Bolstad
- 1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| |
Collapse
|
10
|
Ma L, Li F, Zhang X, Feng X. Biochemical characterization of a recombinant Lactobacillus acidophilus strain expressing exogenous FomA protein. Arch Oral Biol 2018; 92:25-31. [PMID: 29747062 DOI: 10.1016/j.archoralbio.2018.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 11/17/2022]
Abstract
In previous research, to combine the immunogenicity of Fusobacterium nucleatum (F. nucleatum) and the probiotic properties of Lactobacillus acidophilus (L. acidophilus), we constructed a FomA-expressing L. acidophilus strain and assessed its immunogenicity. Our findings indicated that oral administration of the recombinant L. acidophilus strain reduced the risk of periodontal infection by Porphyromonas gingivalis (P. gingivalis) and F. nucleatum. However, because the exogenous FomA is an heterologous protein for the original bacterium, in this study, we assessed whether the biochemical characteristics of the recombinant L. acidophilus strain change due to the expression of the exogenous FomA protein. OBJECTIVES To test the biochemical characteristics of a recombinant L. acidophilus strain expressing exogenous FomA and assess its antibiotic sensitivity. DESIGNS We assessed the colony morphology, growth, acid production, and carbohydrate fermentation abilities of the recombinant L. acidophilus strain. In addition, we tested the adhesive ability and antimicrobial activity of the recombinant and assessed its antibiotic sensitivity through a drug susceptibility test. RESULTS The experimental results showed that the colony and microscopic morphology of the recombinant L. acidophilus strain was consistent with the original strain, and the recombinant strain grew well when cultured under aerobic or anaerobic conditions, exhibiting a growth rate that was identical to that of the standard strain. Similarly, the supernatants of the recombinant L. acidophilus can inhibit the growth of E. coli and P. gingivalis at different concentrations, and the recombinant strain displayed essentially the same drug sensitivity profile as the original L. acidophilus. However, to our surprise, the recombinant strains exhibited a greater adhesion ability than the reference strain. CONCLUSIONS Our study demonstrated that, in addition to an increased adhesion ability, the recombinant L. acidophilus strain maintained the basic characteristics of the standard strain ATCC 4356, including antibiotic sensitivity. Thus, the recombinant strains have great potential to be utilized as a safe and effective periodontitis vaccine in the future.
Collapse
Affiliation(s)
- Li Ma
- Department of Preventive and Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, China
| | - Fei Li
- Department of Preventive Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Xiangyu Zhang
- Department of Preventive and Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, China
| | - Xiping Feng
- Department of Preventive Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China.
| |
Collapse
|
11
|
Guo SH, Wang HF, Nian ZG, Wang YD, Zeng QY, Zhang G. Immunization with alkyl hydroperoxide reductase subunit C reduces Fusobacterium nucleatum load in the intestinal tract. Sci Rep 2017; 7:10566. [PMID: 28874771 PMCID: PMC5585165 DOI: 10.1038/s41598-017-11127-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
Fusobacterium nucleatum (Fn) is an important tumour-associated bacterium in colorectal cancer (CRC). The antioxidant protein alkyl hydroperoxide reductase subunit C (AhpC) can induce strong antibacterial immune response during various pathogen infections. Our study aimed to evaluate the efficacy of Fn-AhpC as a candidate vaccine. In this work, by western blot analysis, we showed that Fn-AhpC recombinant protein could be recognized specifically by antibodies present in the sera of CRC patients; using the mouse Fn-infection model, we observed that systemic prophylactic immunization with AhpC/alum conferred significant protection against infection in 77.3% of mice. In addition, we measured the anti-AhpC antibody level in the sera of CRC patients and found that there was no obvious increase of anti-AhpC antibodies in the early-stage CRC group. Furthermore, we treated Fn with the sera from both immunized mice and CRC patients and found that sera with high anti-AhpC antibodies titre could inhibit Fn growth. In conclusion, our findings support the use of AhpC as a potential vaccine candidate against inhabitation or infection of Fn in the intestinal tract, which could provide a practical strategy for the prevention of CRC associated with Fn infection.
Collapse
Affiliation(s)
- Song-He Guo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Gang Nian
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Dan Wang
- Department of School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Yao Zeng
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|