Ahmed MAE, El Morsy EM, Ahmed AAE. Protective effects of febuxostat against paraquat-induced lung toxicity in rats: Impact on RAGE/PI3K/Akt pathway and downstream inflammatory cascades.
Life Sci 2019;
221:56-64. [PMID:
30726711 DOI:
10.1016/j.lfs.2019.02.007]
[Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
AIMS
The herbicide paraquat causes fatal lung toxicity by induction of xanthine oxidase, production of free radicals and inflammation. Febuxostat, a xanthine oxidase inhibitor and anti-gout has recently shown anti-inflammatory activity. Accordingly, this study was carried out to investigate whether febuxostat may attenuate paraquat-induced lung toxicity and to explore the possible underlying mechanisms.
MAIN METHODS
Rats were administered either vehicle, a single dose of paraquat (30 mg/kg, i.p.), febuxostat (15 mg/kg, oral), or both for 14 successive days. Serum LDH and sRAGE were estimated. Lung tissue xanthine oxidase activity, SOD, TAC, MDA, and RAGE, HMGB1 gene expression, PI3K/Akt and β-catenin protein expression, MMP-9, IL-8, VEGF and COX-2 gene expression were estimated.
KEY FINDINGS
Results showed that paraquat induced lung injury characterized by enhanced oxidative stress and inflammation, upregulated RAGE, HMGB1 gene expression, PI3K/Akt and β-catenin protein expression. Administration of febuxostat inhibited the deleterious effects of paraquat on lung through inhibition of xanthine oxidase activity and related oxidative stress, downregulation of RAGE/PI3K/Akt pathway, and suppression of β-catenin protein expression and its downstream inflammatory mediators.
SIGNIFICANCE
The present study showed that febuxostat may abrogate paraquat-induced lung toxicity and demonstrated a novel mechanism for its ameliorative effects.
Collapse