1
|
Zang L, Fu D, Zhang F, Li N, Ma X. Tenuigenin activates the IRS1/Akt/mTOR signaling by blocking PTPN1 to inhibit autophagy and improve locomotor recovery in spinal cord injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116841. [PMID: 37355079 DOI: 10.1016/j.jep.2023.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenuigenin (TEN) is a main pharmacologically active component of Polygala tenuifolia Willd. (Polygalaceae), which has shown neuroprotective functions in Alzheimer's disease. Moreover, TEN also demonstrated an anti-oxidative impact in an in vitro model of Parkinson's disease, reducing damage and loss of dopaminergic neurons. AIM This work focuses on the impact of TEN on locomotor recovery following spinal cord injury (SCI) and underpinning molecules involved. METHODS A rat model of SCI was generated, and the rats were treated with TEN, oe-PTPN1 (PTP non-receptor type 1), a protein kinase B (Akt)/mammalian target of rapamycin (mTOR) antagonist LY294002, or an autophagy inhibitor 3-methyladenine (3-MA). Subsequently, locomotor function was detected. Pathological changes and neuronal activity in the spinal cord tissues were analyzed by hematoxylin and eosin staining, Nissl staining, and TUNEL assays. Protein expression of Beclin-1 and microtubule associated protein 1 light chain 3 beta (LC3B)-II/LC3B-I, PTPN1, IRS1, mTOR, and phosphorylated Akt (p-Akt) was analyzed by western blot assays. The LC3B expression was further examined by immunofluorescence staining. RESULTS Treatment with TEN restored the locomotor function of SCI rats, reduced the cavity area and cell apoptosis, upregulated growth-associated protein 43 and neurofilament 200, and decreased the Beclin-1 and LC3B-II/LC3B-I levels in the spinal cord. TEN suppressed PTPN1 protein level, while PTPN1 suppressed IRS1 protein to reduce the p-Akt and mTOR levels. Either PTPN1 overexpression or LY294002 treatment blocked the promoting effect of TEN on SCI recovery. However, treatment with 3-MA suppressed autophagy, which consequently rescued the locomotor function and reduced neuron loss induced by PTPN1. CONCLUSION This study demonstrates that TEN suppresses autophagy to promote function recovery in SCI rats by blocking PTPN1 and rescuing the IRS1/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Ning Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Xue Ma
- Department of Emergency, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, PR China.
| |
Collapse
|
2
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
3
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
4
|
Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, Zhou H, Weng Y, Pan J, Zhan R. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY) 2021; 13:3405-3427. [PMID: 33495405 PMCID: PMC7906217 DOI: 10.18632/aging.202272] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia/reperfusion (IR) after ischemic stroke causes deleterious microglial activation. Protein tyrosine phosphatase 1B (PTP1B) exacerbates neuroinflammation, yet the effect of the inhibition on microglial activation and cerebral IR injury is unknown. A cerebral IR rat model was induced by middle cerebral artery occlusion (MCAO) and reperfusion. The PTP1B inhibitor, sc-222227, was administered intracerebroventricularly. Neurologic deficits, infarct volume, and brain water content were examined. An in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model was established in primary microglia and BV-2 cells. Microglial activation/polarization, endoplasmic reticulum (ER) stress, autophagy, and apoptosis were detected using western blot, immunohistology, ELISA, and real-time PCR. Protein interaction was assessed by a proximity ligation assay. The results showed a significant increase in microglial PTP1B expression after IR injury. Sc-222227 attenuated IR-induced microglial activation, ER stress, and autophagy and promoted M2 polarization. Upon OGD/R, sc-222227 mitigated microglial activation by inhibiting ER stress-dependent autophagy, the effect of which was abolished by PERK activation, and PERK inhibition attenuated microglial activation. The PTP1B-phosphorylated PERK protein interaction was significantly increased after OGD/R, but decreased upon sc-222227 treatment. Finally, sc-222227 mitigated neuronal damage and neurologic deficits after IR injury. Treatment targeting microglial PTP1B might be a potential therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianbo Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jiangbiao Gong
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jie Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Di Ye
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dexin Cheng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhikai Xie
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianping Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Kangli Xu
- Emergency Department Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
5
|
Cruz SA, Qin Z, Ricke KM, Stewart AFR, Chen HH. Neuronal protein-tyrosine phosphatase 1B hinders sensory-motor functional recovery and causes affective disorders in two different focal ischemic stroke models. Neural Regen Res 2021; 16:129-136. [PMID: 32788467 PMCID: PMC7818877 DOI: 10.4103/1673-5374.286970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic brain injury causes neuronal death and inflammation. Inflammation activates protein-tyrosine phosphatase 1B (PTP1B). Here, we tested the significance of PTP1B activation in glutamatergic projection neurons on functional recovery in two models of stroke: by photothrombosis, focal ischemic lesions were induced in the sensorimotor cortex (SM stroke) or in the peri-prefrontal cortex (peri-PFC stroke). Elevated PTP1B expression was detected at 4 days and up to 6 weeks after stroke. While ablation of PTP1B in neurons of neuronal knockout (NKO) mice had no effect on the volume or resorption of ischemic lesions, markedly different effects on functional recovery were observed. SM stroke caused severe sensory and motor deficits (adhesive removal test) in wild type and NKO mice at 4 days, but NKO mice showed drastically improved sensory and motor functional recovery at 8 days. In addition, peri-PFC stroke caused anxiety-like behaviors (elevated plus maze and open field tests), and depression-like behaviors (forced swimming and tail suspension tests) in wild type mice 9 and 28 days after stroke, respectively, with minimal effect on sensory and motor function. Peri-PFC stroke-induced affective disorders were associated with fewer active (FosB+) neurons in the PFC and nucleus accumbens but more FosB+ neurons in the basolateral amygdala, compared to sham-operated mice. In contrast, mice with neuronal ablation of PTP1B were protected from anxiety-like and depression-like behaviors and showed no change in FosB+ neurons after peri-PFC stroke. Taken together, our study identifies neuronal PTP1B as a key component that hinders sensory and motor functional recovery and also contributes to the development of anxiety-like and depression-like behaviors after stroke. Thus, PTP1B may represent a novel therapeutic target to improve stroke recovery. All procedures for animal use were approved by the Animal Care and Use Committee of the University of Ottawa Animal Care and Veterinary Service (protocol 1806) on July 27, 2018.
Collapse
Affiliation(s)
- Shelly A Cruz
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| | - Zhaohong Qin
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- Brain and Mind Institute; Department of Biochemistry, Microbiology and Immunology, University of Ottawa; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology; Centre for Infection, Immunity and Inflammation, University of Ottawa; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute; Cellular and Molecular Medicine; Department of Medicine; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. PARKINSONS DISEASE 2020; 2020:8814236. [PMID: 33456749 PMCID: PMC7787797 DOI: 10.1155/2020/8814236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.
Collapse
|
7
|
Activation of tyrosine phosphatase PTP1B in pyramidal neurons impairs endocannabinoid signaling by tyrosine receptor kinase trkB and causes schizophrenia-like behaviors in mice. Neuropsychopharmacology 2020; 45:1884-1895. [PMID: 32610340 PMCID: PMC7608138 DOI: 10.1038/s41386-020-0755-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a debilitating disorder affecting young adults displaying symptoms of cognitive impairment, anxiety, and early social isolation prior to episodes of auditory hallucinations. Cannabis use has been tied to schizophrenia-like symptoms, indicating that dysregulated endogenous cannabinoid signaling may be causally linked to schizophrenia. Previously, we reported that glutamatergic neuron-selective ablation of Lmo4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, impairs endocannabinoid (eCB) production from the metabotropic glutamate receptor mGluR5. These Lmo4-deficient mice display anxiety-like behaviors that are alleviated by local shRNA knockdown or pharmacological inhibition of PTP1B that restores mGluR5-dependent eCB production in the amygdala. Here, we report that these Lmo4-deficient mice also display schizophrenia-like behaviors: impaired working memory assessed in the Y maze and defective sensory gating by prepulse inhibition of the acoustic startle response. Modulation of inhibitory inputs onto layer 2/3 pyramidal neurons of the prefrontal cortex relies on eCB signaling from the brain-derived neurotrophic factor receptor trkB, rather than mGluR5, and this mechanism was defective in Lmo4-deficient mice. Genetic ablation of PTP1B in the glutamatergic neurons lacking Lmo4 restored tyrosine phosphorylation of trkB, trkB-mediated eCB signaling, and ameliorated schizophrenia-like behaviors. Pharmacological inhibition of PTP1B with trodusquemine also restored trkB phosphorylation and improved schizophrenia-like behaviors by restoring eCB signaling, since the CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide blocked this effect. Thus, activation of PTP1B in pyramidal neurons contributes to schizophrenia-like behaviors in Lmo4-deficient mice and genetic or pharmacological intervention targeting PTP1B ameliorates schizophrenia-related deficits.
Collapse
|
8
|
Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid β-Associated Alzheimer's Disease in Mice. J Neurosci 2020; 40:1581-1593. [PMID: 31915254 DOI: 10.1523/jneurosci.2120-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, resulting in the progressive decline of cognitive function in patients. Familial forms of AD are tied to mutations in the amyloid precursor protein, but the cellular mechanisms that cause AD remain unclear. Inflammation and amyloidosis from amyloid β (Aβ) aggregates are implicated in neuron loss and cognitive decline. Inflammation activates the protein-tyrosine phosphatase 1B (PTP1B), and this could suppress many signaling pathways that activate glycogen synthase kinase 3β (GSK3β) implicated in neurodegeneration. However, the significance of PTP1B in AD pathology remains unclear. Here, we show that pharmacological inhibition of PTP1B with trodusquemine or selective ablation of PTP1B in neurons prevents hippocampal neuron loss and spatial memory deficits in a transgenic AD mouse model with Aβ pathology (hAPP-J20 mice of both sexes). Intriguingly, while systemic inhibition of PTP1B reduced inflammation in the hippocampus, neuronal PTP1B ablation did not. These results dissociate inflammation from neuronal loss and cognitive decline and demonstrate that neuronal PTP1B hastens neurodegeneration and cognitive decline in this model of AD. The protective effect of PTP1B inhibition or ablation coincides with the restoration of GSK3β inhibition. Neuronal ablation of PTP1B did not affect cerebral amyloid levels or plaque numbers, but reduced Aβ plaque size in the hippocampus. In summary, our preclinical study suggests that targeting PTP1B may be a new strategy to intervene in the progression of AD.SIGNIFICANCE STATEMENT Familial forms of Alzheimer's disease (AD) are tied to mutations in the amyloid precursor protein, but the cellular mechanisms that cause AD remain unclear. Here, we used a mouse model expressing human amyloid precursor protein bearing two familial mutations and asked whether activation of a phosphatase PTP1B participates in the disease process. Systemic inhibition of this phosphatase using a selective inhibitor prevented cognitive decline, neuron loss in the hippocampus, and attenuated inflammation. Importantly, neuron-targeted ablation of PTP1B also prevented cognitive decline and neuron loss but did not reduce inflammation. Therefore, neuronal loss rather than inflammation was critical for AD progression in this mouse model, and that disease progression could be ameliorated by inhibition of PTP1B.
Collapse
|
9
|
Feng CW, Chen NF, Chan TF, Chen WF. Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. PARKINSON'S DISEASE 2020. [PMID: 33456749 DOI: 10.1155/2020/8814236.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.
Collapse
Affiliation(s)
- Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Jeon YM, Lee S, Kim S, Kwon Y, Kim K, Chung CG, Lee S, Lee SB, Kim HJ. Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity. Mol Cells 2017; 40:280-290. [PMID: 28359145 PMCID: PMC5424274 DOI: 10.14348/molcells.2017.2320] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers (eIF2α phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068,
Korea
| | - Shinrye Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068,
Korea
| | - Seyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068,
Korea
| | - Younghwi Kwon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068,
Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538,
Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186,
Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
| | - Hyung-Jun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068,
Korea
| |
Collapse
|