1
|
Zhang X, Sun Y, Niu H, Tan P, Liu S, Liu X, Liu X, Luo A, Cai M, Yan Y, Xu L, Yang X. FOXO3 polymorphisms influence the risk and prognosis of rhabdomyosarcoma in children. Front Oncol 2024; 14:1387735. [PMID: 38720807 PMCID: PMC11076676 DOI: 10.3389/fonc.2024.1387735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background Rhabdomyosarcoma(RMS) is the most common soft tissue sarcoma in children and single nucleotide polymorphisms(SNPs) in certain genes influence risk of RMS. Although FOXO3 had been reported in multiple cancers including RMS, the role of FOXO3 polymorphisms in RMS remains unclear. In this case-control study, we evaluated the association of FOXO3 SNPs with RMS risk and prognosis in children. Methods Four FOXO3 SNPs(rs17069665 A>G, rs4946936 T>C, rs4945816 C>T and rs9400241 C>A) were genotyped in 110 RMS cases and 359 controls. The associations between FOXO3 polymorphisms and RMS risk were determined by odds ratios(ORs) with 95% confidence intervals(CIs). The associations of rs17069665 and rs4946936 with overall survival in RMS children were estimated using the Kaplan-Meier method and log-rank test. Functional analysis in silico was performed to estimate the probability that rs17069665 and rs4946936 might influence the regulation of FOXO3. Results We found that rs17069665 (GG vs. AA+AG, adjusted OR=2.96; 95%CI [1.10-3.32]; P=0.010) and rs4946936 (TC+CC vs. TT, adjusted OR=0.48; 95%CI [0.25-0.90]; P=0.023) were related to the increased and decreased RMS risk, respectively. Besides, rs17069665(P<0.001) and rs4946936(P<0.001) were associated with decreased and increased overall survival in RMS patients, respectively. Functional analysis showed that rs17069665 and rs4946936 might influence the transcription and expression of FOXO3 via altering the bindings to MYC, CTCF, and/or RELA. Conclusions This study revealed that FOXO3 polymorphisms influence the RMS susceptibility and prognosis in children, and might altered the expression of FOXO3. FOXO3 polymorphism was suggested as a biomarker for RMS susceptibility and prognosis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaping Sun
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Huilin Niu
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaoping Liu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaodan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ailing Luo
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Mansi Cai
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yaping Yan
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ling Xu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Yang
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
2
|
Ji G, Zhang M, Liu Q, Wu S, Wang Y, Chen G, Sandford AJ, He JQ. Functional Polymorphism in the NFE2L2 Gene Associated With Tuberculosis Susceptibility. Front Immunol 2021; 12:660384. [PMID: 34108963 PMCID: PMC8181729 DOI: 10.3389/fimmu.2021.660384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Background Nuclear transcription factor erythroid 2 p45-related factor 2 (Nrf2), encoded by NFE2L2, functions as a key transcription factor and regulates expression of antioxidant genes. Our study aimed to investigate the association of single nucleotide polymorphisms of NFE2L2 with tuberculosis (TB) and latent tuberculosis infection (LTBI) and the underlying causal mechanisms. Methods 1950 unrelated Chinese Han participants were included in our two independent study groups. Five tag polymorphisms were selected and genotyped. The functional effects of the rs13005431 polymorphism were confirmed by dual-luciferase reporter assays and mRNA level comparisons. Results Rs13005431_C and rs2364723_G were associated with increased TB susceptibility (P = 0.010 and P = 0.041) after adjustment for confounding factors. rs6726395_A was associated with increased risk of active TB (P=0.035) in a comparison with the LTBI group. The frequency of haplotype rs1049751- rs13005431 AC was higher in the TB group (P =0.013), while frequency of haplotype AT was higher in the healthy control group (P =0.025). The luciferase activity of a plasmid with the rs13005431C-promoter was significantly lower than that of the rs13005431T-promoter. In addition, neutrophils with the CC/TC genotypes which were activated by GM-CSF showed a decreased level of NFE2L2 mRNA when compared with the rs13005431 TT genotype. Conclusions Our study suggests that allele C of rs13005431 might increase the susceptibility to TB by down-regulating the transcriptional activity of NFE2L2.
Collapse
Affiliation(s)
- Guiyi Ji
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Miaomiao Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Liu
- Department of Respiratory Diseases, Chengdu Municipal First People’s Hospital, Chengdu, China
| | - Shouquan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Chen
- Division of Geriatrics, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Andrew J. Sandford
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Bouzeyen R, Haoues M, Barbouche MR, Singh R, Essafi M. FOXO3 Transcription Factor Regulates IL-10 Expression in Mycobacteria-Infected Macrophages, Tuning Their Polarization and the Subsequent Adaptive Immune Response. Front Immunol 2019; 10:2922. [PMID: 31921181 PMCID: PMC6927284 DOI: 10.3389/fimmu.2019.02922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
Alveolar Macrophages play a key role in the development of a robust adaptive immune response against the agent of Tuberculosis (TB), Mycobacterium tuberculosis (M.tb). However, macrophage response is often hampered by the production of IL-10, a potent suppressor of the host immune response. The secretion of IL-10 correlates with TB pathogenesis and persistence in host tissues. Concordantly, inhibition of IL-10 signaling, during BCG vaccination, confers higher protection against M.tb through a sustained Th1 and Th17 responses. Therefore, uncovering host effectors, underlying mycobacteria-induced expression of IL-10, may be beneficial toward the development of IL-10-blocking tools to be used either as adjuvants in preventive vaccination or as adjunct during standard treatment of TB. Here, we investigated the role of FOXO3 transcription factor in mycobacteria-induced secretion of IL-10. We observed that PI3K/Akt/FOXO3 axis regulates IL-10 expression in human macrophages. Knocking down of FOXO3 expression resulted in an increase of IL-10 production in BCG-infected macrophages. The gene reporter assay further confirmed the transcriptional regulation of IL-10 by FOXO3. In silico analysis identified four Forkhead binding motifs on the human IL-10 promoter, from which the typical FOXO3 one at position -203 was the major target as assessed by mutagenesis and CHIP binding assays. Further, we also observed a decrease in gene expression levels of the M1 typical markers (i.e., CD80 and CD86) in SiFOXO3-transfected macrophages while activation of FOXO3 led to the increase in the expression of CD86, MHCI, and MHCII. Finally, co-culture of human lymphocytes with siFOXO3-transfected macrophages, loaded with mycobacterial antigens, showed decreased expression of Th1/Th17 specific markers and a simultaneous increase in expression of IL-4 and IL-10. Taken together, we report for the first time that FOXO3 modulates IL-10 secretion in mycobacteria-infected macrophage, driving their polarization and the subsequent adaptive immune response. This work proposes FOXO3 as a potential target for the development of host-directed strategies for better treatment or prevention of TB.
Collapse
Affiliation(s)
- Rania Bouzeyen
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Meriam Haoues
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Makram Essafi
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Wang B, Wang Y, Wang L, He X, He Y, Bai M, Zhu L, Zheng J, Yuan D, Jin T. The role of FOXO3 polymorphisms in susceptibility to tuberculosis in a Chinese population. Mol Genet Genomic Med 2019; 7:e770. [PMID: 31241240 PMCID: PMC6687658 DOI: 10.1002/mgg3.770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/27/2019] [Accepted: 05/08/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a significant worldwide health problem, and is caused by Mycobacteria tuberculosis. Recent studies have suggested that FOXO3 plays vital roles in the risk of immune-related infectious diseases such as TB. METHODS AND RESULTS The present study aimed to evaluate FOXO3 genetic variants and TB risk. We recruited 510 TB patients and 508 healthy controls in this study. All subjects were genotyped with the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression adjusted for age and gender. Our result revealed that rs3800229 T/G and rs4946935 G/A genotypes significantly increased the risk of TB (OR = 1.34, 95% CI = 1.04-1.74, p = 0.026; OR = 1.34, 95% CI = 1.03-1.73, p = 0.029, respectively). In stratified analysis according to gender and age, we observed that rs3800229 T/G and rs4946935 G/A genotypes were associated with an increase the risk of TB among males and age ≤41 years, respectively (OR = 1.47, 95% CI = 1.06-2.04, p = 0.022 and OR = 1.45, 95% CI = 1.05-2.02, p = 0.025). CONCLUSIONS Our study showed that rs3800229 and rs4946935 in FOXO3 were associated with a risk of TB in the Chinese population.
Collapse
Affiliation(s)
- Bo Wang
- Department of the 4th Internal MedicineXi’an Chest HospitalXi’anShaanxiChina
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- Department of Clinical LaboratoryAffiliated Hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Linhao Zhu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Jianwen Zheng
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- Department of NeurologyAffiliated hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University)Ministry of EducationXi’anShaanxiChina
| |
Collapse
|
5
|
Wang MG, Zhang MM, Wang Y, Wu SQ, Zhang M, He JQ. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: a case-control study. BMC Infect Dis 2018; 18:561. [PMID: 30424735 PMCID: PMC6234681 DOI: 10.1186/s12879-018-3485-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Background Toll-like receptor (TLR) single nucleotide polymorphisms (SNPs) have been associated with regulation of TLR expression and development of active tuberculosis (TB). The objectives of this study were to determine whether TLR8 and TLR9 SNPs were associated with the development of latent TB infection (LTBI) and the subsequent pulmonary TB (PTB) in a Chinese Han population. Methods Two independent samples were enrolled. The first sample contained 584 TB cases and 608 controls; the second sample included 204 healthy controls, 201 LTBI subjects and 209 bacteria-confirmed active PTB patients. Three SNPs (rs3764880, rs187084 and rs5743836) were genotyped. The associations between the SNPs and risk of LTBI or PTB were investigated using unconditional logistic regression analysis. Results The A-allele of TLR8 rs3764880 SNP was protective against the development of TB in males (A vs G, OR = 0.58, 95%CI = 0.37–0.91). The AA genotype of rs3764880 SNP was found to increase the risk of PTB among females with an OR of 4.81 (1.11–20.85). The G allele of TLR9 SNP rs187084 was found to increase the risk of PTB (G vs A, P = 0.01, OR = 1.48, 95% CI = 1.10–2.00), the significance was also observed under dominant genetic models. The GA-genotype of TLR9 rs187084 SNP was found to increase the risk of PTB with an OR of 1.68 (1.07–2.65), but was found to decrease the risk of MTB infection with an OR = 0.64 (0.41–0.98). TLR9_rs5743836 SNP was excluded from the data analyses, because the minimum allele frequency was< 1%. Conclusions Our findings in two independent samples indicated that SNPs in TLR8 and TLR9 were associated with the development of TB, and highlight that SNPs may have different effects on disease pathogenesis and progression.
Collapse
Affiliation(s)
- Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Miao-Miao Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Shou-Quan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Meng Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
6
|
Lee JC. Beyond disease susceptibility-Leveraging genome-wide association studies for new insights into complex disease biology. HLA 2018; 90:329-334. [PMID: 29106067 DOI: 10.1111/tan.13170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022]
Abstract
Genetic studies in complex diseases have been highly successful, but have also been largely one-dimensional: predominantly focusing on the genetic contribution to disease susceptibility. While this is undoubtedly important-indeed it is a pre-requisite for understanding the mechanisms underlying disease development-there are many other important aspects of disease biology that have received comparatively little attention. In this review, I will discuss how existing genetic data can be leveraged to provide new insights into other aspects of disease biology, why such insights could change the way we think about complex disease, and how this could provide opportunities for better therapies and/or facilitate personalised medicine. To do this, I will use the example of Crohn's disease-a chronic form of inflammatory bowel disease that has been one of the main success stories in complex disease genetics. Indeed, thanks to genetic studies, we now have a much more detailed understanding of the processes involved in Crohn's disease development, but still know relatively little about what determines the subsequent disease course (prognosis) and why this differs so considerably between individuals. I will discuss how we came to realise that genetic variation plays an important role in determining disease prognosis and how this has changed the way we think about Crohn's disease genetics. This will illustrate how phenotypic data can be used to leverage new insights from genetic data and will provide a broadly applicable framework that could yield new insights into the biology of multiple diseases.
Collapse
Affiliation(s)
- J C Lee
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
7
|
Verstockt B, Smith KGC, Lee JC. Genome-wide association studies in Crohn's disease: Past, present and future. Clin Transl Immunology 2018; 7:e1001. [PMID: 29484179 PMCID: PMC5822399 DOI: 10.1002/cti2.1001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022] Open
Abstract
Over the course of the past decade, genome-wide association studies (GWAS) have revolutionised our understanding of complex disease genetics. One of the diseases that has benefitted most from this technology has been Crohn's disease (CD), with the identification of autophagy, the IL-17/IL-23 axis and innate lymphoid cells as key players in CD pathogenesis. Our increasing understanding of the genetic architecture of CD has also highlighted how a failure to suppress aberrant immune responses may contribute to disease development - a realisation that is now being incorporated into the design of new treatments. However, despite these successes, a significant proportion of disease heritability remains unexplained. Similarly, most of the causal variants at associated loci have not yet been identified, and even fewer have been functionally characterised. Because of the inarguable rise in the incidence of CD in regions of the world that previously had low disease rates, GWAS studies will soon have to shift from a largely Caucasian focus to include populations from other ethnic backgrounds. Future studies should also move beyond conventional studies of disease susceptibility into phenotypically driven 'within-cases' analyses in order to explore the role of genetics in other important aspects of disease biology. These studies are likely to include assessments of prognosis and/or response to treatments and may be critical if personalised medicine is ever to become a reality.
Collapse
Affiliation(s)
- Bram Verstockt
- Translational Research in Gastrointestinal Disorders (TARGID) ‐ IBDDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA)KU LeuvenLeuvenBelgium
- Department of Gastroenterology and HepatologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of MedicineUniversity of Cambridge School of Clinical MedicineAddenbrooke's HospitalCambridgeUK
| | - Kenneth GC Smith
- Department of MedicineUniversity of Cambridge School of Clinical MedicineAddenbrooke's HospitalCambridgeUK
| | - James C Lee
- Department of MedicineUniversity of Cambridge School of Clinical MedicineAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
8
|
Leon Rodriguez DA, González CI, Martin J. Analysis of association of FOXO3 gene with Trypanosoma cruzi infection and chronic Chagasic cardiomyopathy. HLA 2016; 87:449-52. [PMID: 27125259 DOI: 10.1111/tan.12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
FOXO3, a member of the Forkhead family of proteins, plays a role in controlling immune response. FOXO3 gene variant rs12212067 has been associated to differential severity of infectious diseases like malaria. In this study, we assessed whether this FOXO3 gene polymorphism is related to susceptibility to infection by Trypanosoma cruzi and/or chronic Chagasic cardiomyopathy. A total of 1171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and chronic Chagasic cardiomyopathy (n = 401) were genotyped for the FOXO3 rs12212067 using TaqMan allelic discrimination. Our results showed no statistically significantly differences between allelic and genotypic frequencies of rs12212067 in seronegative individuals compared with seropositive individuals. Similarly, we observed no evidence of association when asymptomatic individuals were compared with chronic Chagasic cardiomyopathy patients. Our data suggest that the FOXO3 genetic variant rs12212067 do not play an important role in Chagas disease.
Collapse
Affiliation(s)
- D A Leon Rodriguez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| | - C I González
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - J Martin
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| |
Collapse
|