1
|
Lee M, Seo D, Park J, Lee SH, Jeon J, Kim W, Kim J, Yang HS, Lee JY. Wet tissue adhesive polymeric powder hydrogels for skeletal muscle regeneration. Bioact Mater 2024; 40:334-344. [PMID: 38978803 PMCID: PMC11228550 DOI: 10.1016/j.bioactmat.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Volumetric muscle loss (VML) frequently results from traumatic incidents and can lead to severe functional disabilities. Hydrogels have been widely employed for VML tissue regeneration, which are unfortunately ineffective because of the lack of intimate contact with injured tissue for structural and mechanical support. Adhesive hydrogels allow for strong tissue connections for wound closure. Nevertheless, conventional adhesive hydrogels exhibit poor tissue adhesion in moist, bleeding wounds due to the hydration layer at the tissue-hydrogel interfaces, resulting in insufficient performance. In this study, we developed a novel, biocompatible, wet tissue adhesive powder hydrogel consisting of dextran-aldehyde (dex-ald) and gelatin for the regeneration of VML. This powder absorbs the interfacial tissue fluid and buffer solution on the tissue, spontaneously forms a hydrogel, and strongly adheres to the tissue via various molecular interactions, including the Schiff base reaction. In particular, the powder composition with a 1:4 ratio of dex-ald to gelatin exhibited optimal characteristics with an appropriate gelation time (258 s), strong tissue adhesion (14.5 kPa), and stability. Dex-ald/gelatin powder hydrogels presented strong adhesion to various organs and excellent hemostasis compared to other wet hydrogels and fibrin glue. A mouse VML injury model revealed that the dex-ald/gelatin powder hydrogel significantly improved muscle regeneration, reduced fibrosis, enhanced vascularization, and decreased inflammation. Consequently, our wet-adhesive powder hydrogel can serve as an effective platform for repairing various tissues, including the heart, muscle, and nerve tissues.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Daun Seo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sun Hong Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Li Z, Hou D, Tang Z, Xiong L, Yan Y. The potential role of stem cells-derived extracellular vesicles in the treatment of musculoskeletal system diseases. Cell Biol Int 2024; 48:237-252. [PMID: 38100269 DOI: 10.1002/cbin.12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The therapeutic potential of stem cells-derived extracellular vesicles (EVs) has shown a great progress in the regenerative medicine. EVs are rich in a variety of bioactive substances, which are important carriers of signal transmission and interactions between cells, and they play an important role in the processes of tissue repair and regeneration. Several studies have shown that stem cells-derived EVs regulate immunity, promote cell proliferation and differentiation, enhance bone and vascular regeneration, and play an increasingly important role in musculoskeletal system. This review aimed to describe the biological characteristics of stem cells-derived EVs and discuss their potential role in the therapy of musculoskeletal system diseases.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Demiao Hou
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Zijin Tang
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Lishun Xiong
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiguo Yan
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Tamura Y, Kawashima T, Ji R, Agata N, Itoh Y, Kawakami K. Histological and biochemical changes in lymphatic vessels after skeletal muscle injury induced by lengthening contraction in male mice. Physiol Rep 2024; 12:e15950. [PMID: 38355142 PMCID: PMC10866689 DOI: 10.14814/phy2.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Lymphatic vessels are actively involved in the recovery process of inflamed tissues. However, the changes in intramuscular lymphatic vessels during inflammation caused by skeletal muscle injury remain unclear. Therefore, the purpose of this study was to clarify the changes in lymphatic vessels after skeletal muscle injury. The left tibialis anterior muscles of male mice were subjected to lengthening contractions (LC) for inducing skeletal muscle injury, and samples were collected on Days 2, 4, and 7 for examining changes in both the skeletal muscles and intramuscular lymphatic vessels. With hematoxylin-eosin staining, the inflammatory response was observed in myofibers on Days 2 and 4 after LC, whereas regeneration of myofibers was found on Day 7 after LC. The number and area of intramuscular lymphatic vessels analyzed by immunohistochemical staining with an antibody against lymphatic vessel endothelial hyaluronan receptor 1 were significantly increased only on Day 4 after LC. Based on the abovementioned results, intramuscular lymphatic vessels undergo morphological changes such as increase under the state of muscle inflammation. This study demonstrated that the morphology of intramuscular lymphatic vessels undergoes significant changes during the initial recovery phase following skeletal muscle injury.
Collapse
Affiliation(s)
- Yuma Tamura
- Physical Therapy Research Field, Graduate School of MedicineOita UniversityYufuJapan
| | - Takafumi Kawashima
- Department of RehabilitationAkeno‐Central HospitalOitaJapan
- Faculty of Welfare and Health ScienceOita UniversityOitaJapan
| | - Rui‐Cheng Ji
- Physical Therapy Research Field, Graduate School of MedicineOita UniversityYufuJapan
- Faculty of Welfare and Health ScienceOita UniversityOitaJapan
| | - Nobuhide Agata
- Faculty of Health and Medical SciencesTokoha UniversityHamamatsuJapan
| | - Yuta Itoh
- Faculty of Rehabilitation ScienceNagoya Gakuin UniversityNagoyaJapan
| | - Keisuke Kawakami
- Physical Therapy Research Field, Graduate School of MedicineOita UniversityYufuJapan
- Faculty of Welfare and Health ScienceOita UniversityOitaJapan
| |
Collapse
|
4
|
Cortez I, Gaffney CM, Crelli CV, Lee E, Nichols JM, Pham HV, Mehdi S, Janjic JM, Shepherd AJ. Sustained pain and macrophage infiltration in a mouse muscle contusion model. Muscle Nerve 2024; 69:103-114. [PMID: 37929655 DOI: 10.1002/mus.28001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION/AIMS Prior studies have emphasized the role of inflammation in the response to injury and muscle regeneration, but little emphasis has been placed on characterizing the relationship between innate inflammation, pain, and functional impairment. The aim of our study was to determine the contribution of innate immunity to prolonged pain following muscle contusion. METHODS We developed a closed-impact mouse model of muscle contusion and a macrophage-targeted near-infrared fluorescent nanoemulsion. Closed-impact contusions were delivered to the lower left limb. Pain sensitivity, gait dysfunction, and inflammation were assessed in the days and weeks post-contusion. Macrophage accumulation was imaged in vivo by injecting i.v. near-infrared nanoemulsion. RESULTS Despite hindpaw hypersensitivity persisting for several weeks, disruptions to gait and grip strength typically resolved within 10 days of injury. Using non-invasive imaging and immunohistochemistry, we show that macrophage density peaks in and around the affected muscle 3 day post-injury and quickly subsides. However, macrophage density in the ipsilateral sciatic nerve and dorsal root ganglia (DRG) increases more gradually and persists for at least 14 days. DISCUSSION In this study, we demonstrate pain sensitivity is influenced by the degree of lower muscle contusion, without significant changes to gait and grip strength. This may be due to modulation of pain signaling by macrophage proliferation in the sciatic nerve, upstream from the site of injury. Our work suggests chronic pain developing from muscle contusion is driven by macrophage-derived neuroinflammation in the peripheral nervous system.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caitlyn M Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caitlin V Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Eric Lee
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Syed Mehdi
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Siu WS, Ma H, Cheng W, Shum WT, Leung PC. Traditional Chinese Medicine for Topical Treatment of Skeletal Muscle Injury. Pharmaceuticals (Basel) 2023; 16:1144. [PMID: 37631059 PMCID: PMC10457816 DOI: 10.3390/ph16081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle injuries are common musculoskeletal problems, but the pharmaceutical agent for muscle repair and healing is insufficient. Traditional Chinese Medicine (TCM) frequently uses topical treatments to treat muscle injuries, although scientific evidence supporting their efficacy is scarce. In this study, an in vitro assay was used to test the cytotoxicity of a topical TCM formula containing Carthami Flos, Dipsaci Radix, and Rhei Rhizoma (CDR). Then, a muscle contusion rat model was developed to investigate the in vivo effect and basic mechanisms underlying CDR on muscle regeneration. The in vitro assay illustrated that CDR was non-cytotoxic to immortalized rat myoblast culture and increased cell viability. Histological results demonstrated that the CDR treatment facilitated muscle repair by increasing the number of new muscle fibers and promoting muscle integrity. The CDR treatment also upregulated the expression of Pax7, MyoD and myogenin, as evidenced by an immunohistochemical study. A gene expression analysis indicated that the CDR treatment accelerated the regeneration and remodeling phases during muscle repair. This study demonstrated that topical CDR treatment was effective at facilitating muscle injury repair.
Collapse
Affiliation(s)
- Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wai-Ting Shum
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
6
|
Sung S, Steele LA, Risser GE, Spiller KL. Biomaterial-Assisted Macrophage Cell Therapy for Regenerative Medicine. Adv Drug Deliv Rev 2023:114979. [PMID: 37394101 DOI: 10.1016/j.addr.2023.114979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Although most tissue types are capable of some form of self-repair and regeneration, injuries that are larger than a critical threshold or those occurring in the setting of certain diseases can lead to impaired healing and ultimately loss of structure and function. The immune system plays an important role in tissue repair and must be considered in the design of therapies in regenerative medicine. In particular, macrophage cell therapy has emerged as a promising strategy that leverages the reparative roles of these cells. Macrophages are critical for successful tissue repair and accomplish diverse functions throughout all phases of the process by dramatically shifting in phenotypes in response to microenvironmental cues. Depending on their response to various stimuli, they may release growth factors, support angiogenesis, and facilitate extracellular matrix remodeling. However, this ability to rapidly shift phenotype is also problematic for macrophage cell therapy strategies, because adoptively transferred macrophages fail to maintain therapeutic phenotypes following their administration to sites of injury or inflammation. Biomaterials are a potential way to control macrophage phenotype in situ while also enhancing their retention at sites of injury. Cell delivery systems incorporated with appropriately designed immunomodulatory signals have potential to achieve tissue regeneration in intractable injuries where traditional therapies have failed. Here we explorecurrent challenges in macrophage cell therapy, especially retention and phenotype control, how biomaterials may overcome them, and opportunities for next generation strategies. Biomaterials will be an essential tool to advance macrophage cell therapy for widespread clinical applications.
Collapse
Affiliation(s)
- Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory E Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Tian X, Gao Z, Yin D, Hu Y, Fang B, Li C, Lou S, Rao Z, Shi R. 17beta-estradiol alleviates contusion-induced skeletal muscle injury by decreasing oxidative stress via SIRT1/PGC-1α/Nrf2 pathway. Steroids 2023; 191:109160. [PMID: 36574869 DOI: 10.1016/j.steroids.2022.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aimed to investigate the role of 17β-estradiol (E2) in the repair of contusion-induced myoinjury in mice and to identify the underlying molecular mechanisms. METHODS In vivo, contusion protocol was performed for preparing mice myoinjury model, and Injection (i.p.) of 17β-estradiol (E2) or estrogen receptor antagonist ICI 182,780, or ovariectomy (OVX), was used to alter estrogen level of animal models. In vitro, C2C12 myoblasts were treated with H2O2 (oxidative stress inducer), SIRT1 inhibitor EX527, or aromatase inhibitor anastrozole. Serum E2 level was assessed by enzyme-linked immunosorbent assay (ELISA). Muscle damage repair was evaluated by H&E staining and the activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH). The oxidative stress was estimated by the levels of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Western blot was performed to measure the protein expressions of SIRT1, PGC-1α, Nrf2, and HO-1. RESULTS We observed the elevated serum E2 levels and the upregulated oxidative stress in damaged muscle in female mice after contusion-induction. The E2 administration in vivo alleviated contusion-induced myoinjury in OVX mice by reducing CK and LDH activities, suppressing oxidative stress, and enhancing the expression levels of SIRT1, PGC-1α, Nrf2, and HO-1. These effects were inhibited by treatment with an ERα/β antagonist. Moreover, EX527 or anastrozole treatment exacerbated H2O2-induced growth inhibition and oxidative stress, and expression downregulation of SIRT1, PGC-1α, Nrf2, and HO-1 in C2C12 cells in vitro. CONCLUSION Our results suggest that E2 is a positive intervention factor for muscle repair followed contusion-induced myoinjury, through its effects on suppressing oxidative stress via activating the SIRT1/PGC-1α/Nrf2 pathway.
Collapse
Affiliation(s)
- Xu Tian
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Zelin Gao
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Danyang Yin
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Yi Hu
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Biqing Fang
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Cong Li
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Shujie Lou
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China.
| |
Collapse
|
8
|
VanderVeen BN, Cardaci TD, Madero SS, McDonald SJ, Bullard BM, Price RL, Carson JA, Fan D, Murphy EA. 5-Fluorouracil disrupts skeletal muscle immune cells and impairs skeletal muscle repair and remodeling. J Appl Physiol (1985) 2022; 133:834-849. [PMID: 36007896 PMCID: PMC9529268 DOI: 10.1152/japplphysiol.00325.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
5-Fluorouracil (5FU) remains a first-line chemotherapeutic for several cancers despite its established adverse side effects. Reduced blood counts with cytotoxic chemotherapies not only expose patients to infection and fatigue, but can disrupt tissue repair and remodeling, leading to lasting functional deficits. We sought to characterize the impact of 5FU-induced leukopenia on skeletal muscle in the context of remodeling. First, C57BL/6 mice were subjected to multiple dosing cycles of 5FU and skeletal muscle immune cells were assessed. Second, mice given 1 cycle of 5FU were subjected to 1.2% BaCl2 intramuscularly to induce muscle damage. One cycle of 5FU induced significant body weight loss, but only three dosing cycles of 5FU induced skeletal muscle mass loss. One cycle of 5FU reduced skeletal muscle CD45+ immune cells with a particular loss of infiltrating CD11b+Ly6cHi monocytes. Although CD45+ cells returned following three cycles, CD11b+CD68+ macrophages were reduced with three cycles and remained suppressed at 1 mo following 5FU administration. One cycle of 5FU blocked the increase in CD45+ immune cells 4 days following BaCl2; however, there was a dramatic increase in CD11b+Ly6g+ neutrophils and a loss of CD11b+Ly6cHi monocytes in damaged muscle with 5FU compared with PBS. These perturbations resulted in increased collagen production 14 and 28 days following BaCl2 and a reduction in centralized nuclei and myofibrillar cross-sectional area compared with PBS. Together, these results demonstrate that cytotoxic 5FU impairs muscle damage repair and remodeling concomitant with a loss of immune cells that persists beyond the cessation of treatment.NEW & NOTEWORTHY We examined the common chemotherapeutic 5-fluorouracil's (5FU) impact on skeletal muscle immune cells and skeletal muscle repair. 5FU monotherapy decreased body weight and muscle mass, and perturbed skeletal muscle immune cells. In addition, 5FU decreased skeletal muscle immune cells and impaired infiltration following damage contributing to disrupted muscle repair. Our results demonstrate 5FU's impact on skeletal muscle and provide a potential explanation for why some patients may be unable to properly repair damaged tissue.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Sarah S Madero
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Sierra J McDonald
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Robert L Price
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - James A Carson
- Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Daping Fan
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
9
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Deng P, Qiu S, Liao F, Jiang Y, Zheng C, Zhu Q. Contusion concomitant with ischemia injury aggravates skeletal muscle necrosis and hinders muscle functional recovery. Exp Biol Med (Maywood) 2022; 247:1577-1590. [PMID: 35775612 PMCID: PMC9554171 DOI: 10.1177/15353702221102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contusion concomitant with ischemia injury to skeletal muscles is common in civilian and battlefield trauma. Despite their clinical importance, few experimental studies on these injuries are reported. The present study established a rat skeletal muscle contusion concomitant with ischemia injury model to identify skeletal muscle alterations compared with contusion injury or ischemia injury. Macroscopic and microscopic morphological evaluation showed that contusion concomitant with ischemia injury aggravated muscle edema and hematoxylin-eosin (HE) injury score at 24 h postinjury. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, together with gastrocnemius muscle (GM) tumor necrosis factor-alpha (TNF-α) content elevated at 24 h postinjury too. During the 28-day follow-up, electrophysiological and contractile impairment was more severe in the contusion concomitant with ischemia injury group. In addition, contusion concomitant with ischemia injury decreased the percentage of larger (600-3000 μm2) fibers and increased the fibrotic area and collagen I proportion in the GM. Smaller proportions of Pax7+ and MyoD+ satellite cells (SCs) were observed in the contusion concomitant with ischemia injury group at 7 days postinjury. In conclusion, contusion concomitant with ischemia injury to skeletal muscle not only aggravates early muscle fiber necrosis but also hinders muscle functional recovery by impairing SC differentiation and exacerbating fibrosis during skeletal muscle repair.
Collapse
Affiliation(s)
- Peijun Deng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China,Qingtang Zhu.
| |
Collapse
|
11
|
Han H, Li M, Liu H, Li H. Electroacupuncture regulates inflammation, collagen deposition and macrophage function in skeletal muscle through the TGF-β1/Smad3/p38/ERK1/2 pathway. Exp Ther Med 2021; 22:1457. [PMID: 34737797 PMCID: PMC8561769 DOI: 10.3892/etm.2021.10892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injury is one of the most common sports injury, which accounts for ~40% of all sports-related injuries among the elderly. In addition, cases of full recovery from treatment are rare. Although electroacupuncture (EA) is an integral aspect of traditional Chinese medicine, the effects of EA on skeletal muscle fibrosis and the possible underlying mechanism remain unclear. To investigate the effect and potential mechanism of EA on skeletal inflammation, collagen deposition and macrophage function, a skeletal muscle injury model was established by injecting 100 µl cardiotoxin into the anterior tibial muscle of Sprague Dawley rats. The animals were randomly divided into the following three groups: Control, model and EA. The expression of inflammation-related factors (IL-6, IL-4, IL-33, IL-10 and TNF-α) were measured using ELISA. H&E staining, Masson's staining and immunohistochemistry (collagen II, Axin2 and β-catenin) were performed to assess collagen deposition and fibrosis in the muscle tissues. Additionally, immunofluorescence was performed to measure the ratio of M1 to M2 macrophages. Western blotting was performed to examine the activity of the TGF-β1/Smad3/p38/ERK1/2 pathway. Compared with that in the control rats, the mental state, such as the degree of activity and excitement, of the model rats deteriorated, with clear activity limitations. Compared with those in the model rats, EA-treated rats exhibited improved mental status and activity, reduced levels of IL-6, IL-4 and TNF-α, reduced collagen deposition and fibrosis, in addition to increased expression of IL-33 and IL-10. This improvement became increasingly evident with prolonged intervention time. EA also promoted the transformation of macrophages from the M1 into the M2 sub-type, where the M1/M2 ratio on day 7 was lower compared with that on day 14. Western blotting results showed that compared with that in the model rats, the expression of TGF-β1, MMP-2, MMP-7 and the activation of Smad3 and p38 was decreased in EA-treated rats, whilst the activation of ERK1/2 was significantly elevated. In conclusion, EA can inhibit inflammation and collagen deposition whilst promoting the transformation of macrophages from the M1 into the M2 sub-type. The underlying mechanism was found to be associated with TGF-β1/Smad3/p38/ERK1/2 signaling.
Collapse
Affiliation(s)
- Hong Han
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei 430000, P.R. China
| | - Ming Li
- Department of Rehabilitation, Hubei Provincial Hospital, Wuhan, Hubei 430071, P.R. China
| | - Huilin Liu
- Department of Neurological Physical Therapy, China Rehabilitation Research Center, Bo Ai Hospital, Beijing 100068, P.R. China
| | - Haohan Li
- The Facility of Business and Law, Deakin University Health Faculty, Geelong, Victoria 3220, Australia
| |
Collapse
|
12
|
Shou J, Shi X, Liu X, Chen Y, Chen P, Xiao W. Programmed death-1 promotes contused skeletal muscle regeneration by regulating Treg cells and macrophages. J Transl Med 2021; 101:719-732. [PMID: 33674785 PMCID: PMC8137453 DOI: 10.1038/s41374-021-00542-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Immune cells are involved in skeletal muscle regeneration. The mechanism by which Treg cells are involved in the regeneration of injured skeletal muscle is still unclear. The purpose of this study was to explore the role of programmed death-1 in contused skeletal muscle regeneration, and to clarify the regulation of programmed death-1 on Treg cell generation and macrophage polarization, in order to deepen our understanding of the relationship between the immune system and injured skeletal muscle regeneration. The results show that programmed death-1 knockdown reduced the number of Treg cells and impaired contused skeletal muscle regeneration compared with those of wild-type mice. The number of pro-inflammatory macrophages in the contused skeletal muscle of programmed death-1 knockout mice increased, and the expression of pro-inflammatory factors and oxidative stress factors increased, while the number of anti-inflammatory macrophages and the expression of anti-inflammatory factors, antioxidant stress factors, and muscle regeneration-related factors decreased. These results suggest that programmed death-1 can promote contused skeletal muscle regeneration by regulating Treg cell generation and macrophage polarization.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xinjuan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
13
|
Hymel LA, Ogle ME, Anderson SE, San Emeterio CL, Turner TC, York WY, Liu AY, Olingy CE, Sridhar S, Lim HS, Sulchek T, Qiu P, Jang YC, Willett NJ, Botchwey EA. Modulating local S1P receptor signaling as a regenerative immunotherapy after volumetric muscle loss injury. J Biomed Mater Res A 2021; 109:695-712. [PMID: 32608188 PMCID: PMC7772280 DOI: 10.1002/jbm.a.37053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
Regeneration of skeletal muscle after volumetric injury is thought to be impaired by a dysregulated immune microenvironment that hinders endogenous repair mechanisms. Such defects result in fatty infiltration, tissue scarring, chronic inflammation, and debilitating functional deficits. Here, we evaluated the key cellular processes driving dysregulation in the injury niche through localized modulation of sphingosine-1-phosphate (S1P) receptor signaling. We employ dimensionality reduction and pseudotime analysis on single cell cytometry data to reveal heterogeneous immune cell subsets infiltrating preclinical muscle defects due to S1P receptor inhibition. We show that global knockout of S1P receptor 3 (S1PR3) is marked by an increase of muscle stem cells within injured tissue, a reduction in classically activated relative to alternatively activated macrophages, and increased bridging of regenerating myofibers across the defect. We found that local S1PR3 antagonism via nanofiber delivery of VPC01091 replicated key features of pseudotime immune cell recruitment dynamics and enhanced regeneration characteristic of global S1PR3 knockout. Our results indicate that local S1P receptor modulation may provide an effective immunotherapy for promoting a proreparative environment leading to improved regeneration following muscle injury.
Collapse
Affiliation(s)
- Lauren A. Hymel
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Molly E. Ogle
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shannon E. Anderson
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Thomas C. Turner
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - William Y. York
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alan Y. Liu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Claire E. Olingy
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sraeyes Sridhar
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong Seo Lim
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA 30332
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Young C. Jang
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA 30332
| | - Nick J. Willett
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Orthopedics, Emory University, Atlanta, GA, USA 30322
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA, 30030
| | - Edward A. Botchwey
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
14
|
Ollewagen T, Myburgh KH, van de Vyver M, Smith C. Rheumatoid cachexia: the underappreciated role of myoblast, macrophage and fibroblast interplay in the skeletal muscle niche. J Biomed Sci 2021; 28:15. [PMID: 33658022 PMCID: PMC7931607 DOI: 10.1186/s12929-021-00714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although rheumatoid arthritis affects 1% of the global population, the role of rheumatoid cachexia, which occurs in up to a third of patients, is relatively neglected as research focus, despite its significant contribution to decreased quality of life in patients. A better understanding of the cellular and molecular processes involved in rheumatoid cachexia, as well as its potential treatment, is dependent on elucidation of the intricate interactions of the cells involved, such as myoblasts, fibroblasts and macrophages. Persistent RA-associated inflammation results in a relative depletion of the capacity for regeneration and repair in the satellite cell niche. The repair that does proceed is suboptimal due to dysregulated communication from the other cellular role players in this multi-cellular environment. This includes the incomplete switch in macrophage phenotype resulting in a lingering pro-inflammatory state within the tissues, as well as fibroblast-associated dysregulation of the dynamic control of the extracellular matrix. Additional to this endogenous dysregulation, some treatment strategies for RA may exacerbate muscle wasting and no multi-cell investigation has been done in this context. This review summarizes the most recent literature characterising clinical RA cachexia and links these features to the roles of and complex communication between multiple cellular contributors in the muscle niche, highlighting the importance of a targeted approach to therapeutic intervention.
Collapse
Affiliation(s)
- T Ollewagen
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - K H Myburgh
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
15
|
Luo Z, Lin J, Sun Y, Wang C, Chen J. Bone Marrow Stromal Cell-Derived Exosomes Promote Muscle Healing Following Contusion Through Macrophage Polarization. Stem Cells Dev 2021; 30:135-148. [PMID: 33323007 DOI: 10.1089/scd.2020.0167] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle contusion is among the most common injuries in traumatology and clinics of sports medicine. The injured muscle is vulnerable to re-injury owing to fibrosis formation. Given that the bone marrow stromal cell-derived exosomes (BMSC-Exos) displayed promising therapeutic effect for various tissues, we used BMSC-Exos to treat skeletal muscle contusion and investigated its effects on muscle healing. In this study, the in vivo model of skeletal muscle contusion was established by subjecting the tibialis anterior of young male mice to hit injury, and the in vitro inflammation model was established by lipopolysaccharide treatment on macrophages. Macrophage depletion model was built by intraperitoneal injection with clodronate-containing liposomes. Exosomes were isolated and purified from the supernatant of BMSCs using gradient centrifugation. Nanoparticle tracking analysis, transmission electron microscope, and western blot were used to identify the exosomes. HE stain, Masson stain, immunofluorescence, and biomechanical testing were carried out on the muscle tissue. In addition, enzyme-linked immunosorbent assay (ELISA) assays, real-time qPCR, flow cytometry, and PKH67 fluorescence trace were conducted in vitro. Intramuscular injection of BMSC-Exos to mice after muscle contusion alleviated inflammation level, reduced fibrosis size, promoted muscle regeneration, and improved biomechanical property. After macrophages depletion, the effects of BMSC-Exos were inhibited. In vitro, PKH-67 fluorescence was internalized into macrophages. BMSC-Exos promoted M2 macrophages polarization both in vivo and in vitro. At the same time, BMSC-Exos reduced the production of inflammatory cytokines under the inflammatory microenvironment and upregulated anti-inflammatory factors expression. In conclusion, BMSC-Exos attenuated muscle contusion injury and promoted muscle healing in mice by modifying the polarization status of macrophages and suppressing the inflammatory reaction.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenghui Wang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
VanderVeen BN, Sougiannis AT, Velazquez KT, Carson JA, Fan D, Murphy EA. The Acute Effects of 5 Fluorouracil on Skeletal Muscle Resident and Infiltrating Immune Cells in Mice. Front Physiol 2020; 11:593468. [PMID: 33364975 PMCID: PMC7750461 DOI: 10.3389/fphys.2020.593468] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
5 fluorouracil (5FU) has been a first-choice chemotherapy drug for several cancer types (e.g., colon, breast, head, and neck); however, its efficacy is diminished by patient acquired resistance and pervasive side effects. Leukopenia is a hallmark of 5FU; however, the impact of 5FU-induced leukopenia on healthy tissue is only becoming unearthed. Recently, skeletal muscle has been shown to be impacted by 5FU in clinical and preclinical settings and weakness and fatigue remain among the most consistent complaints in cancer patients undergoing chemotherapy. Monocytes, or more specifically macrophages, are the predominate immune cell in skeletal muscle which regulate turnover and homeostasis through removal of damaged or old materials as well as coordinate skeletal muscle repair and remodeling. Whether 5FU-induced leukopenia extends beyond circulation to impact resident and infiltrating skeletal muscle immune cells has not been examined. The purpose of the study was to examine the acute effects of 5FU on resident and infiltrating skeletal muscle monocytes and inflammatory mediators. Male C57BL/6 mice were given a physiologically translatable dose (35 mg/kg) of 5FU, or PBS, i.p. once daily for 5 days to recapitulate 1 dosing cycle. Our results demonstrate that 5FU reduced circulating leukocytes, erythrocytes, and thrombocytes while inducing significant body weight loss (>5%). Flow cytometry analysis of the skeletal muscle indicated a reduction in total CD45+ immune cells with a corresponding decrease in total CD45+CD11b+ monocytes. There was a strong relationship between circulating leukocytes and skeletal muscle CD45+ immune cells. Skeletal muscle Ly6cHigh activated monocytes and M1-like macrophages were reduced with 5FU treatment while total M2-like CD206+CD11c- macrophages were unchanged. Interestingly, 5FU reduced bone marrow CD45+ immune cells and CD45+CD11b+ monocytes. Our results demonstrate that 5FU induced body weight loss and decreased skeletal muscle CD45+ immune cells in association with a reduction in infiltrating Ly6cHigh monocytes. Interestingly, the loss of skeletal muscle immune cells occurred with bone marrow cell cycle arrest. Together our results highlight that skeletal muscle is sensitive to 5FU's off-target effects which disrupts both circulating and skeletal muscle immune cells.
Collapse
Affiliation(s)
- Brandon N. VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - Alexander T. Sougiannis
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kandy T. Velazquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James A. Carson
- Department of Physical Therapy, College of Health Professionals, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daping Fan
- AcePre, LLC, Columbia, SC, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| |
Collapse
|
17
|
Dalle S, Poffé C, Hiroux C, Suhr F, Deldicque L, Koppo K. Ibuprofen does not impair skeletal muscle regeneration upon cardiotoxin-induced injury. Physiol Res 2020; 69:847-859. [PMID: 32901495 DOI: 10.33549/physiolres.934482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscle regeneration is regulated through interaction between muscle and immune cells. Studies showed that treatment with supra-physiological doses of Non-Steroidal Anti-Inflammatory Drug (NSAID) abolished inflammatory signaling and impaired muscle recovery. The present study examines the effects of pharmacologically-relevant NSAID treatment on muscle regeneration. C57BL/6 mice were injected in the tibialis anterior (TA) with either PBS or cardiotoxin (CTX). CTX-injected mice received ibuprofen (CTX-IBU) or were untreated (CTX-PLAC). After 2 days, Il-1beta and Il-6 expression was upregulated in the TA of CTX-IBU and CTX-PL vs. PBS. However, Cox-2 expression and macrophage infiltration were higher in CTX-PL vs. PBS, but not in CTX-IBU. At the same time, anabolic markers were higher in CTX-IBU vs. PBS, but not in CTX-PL. Nevertheless, ibuprofen did not affect muscle mass or muscle fiber regeneration. In conclusion, mild ibuprofen doses did not worsen muscle regeneration. There were even signs of a transient improvement in anabolic signaling and attenuation of inflammatory signaling.
Collapse
Affiliation(s)
- S Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Zhao L, Liu X, Zhang J, Dong G, Xiao W, Xu X. Hydrogen Sulfide Alleviates Skeletal Muscle Fibrosis via Attenuating Inflammation and Oxidative Stress. Front Physiol 2020; 11:533690. [PMID: 33071808 PMCID: PMC7530892 DOI: 10.3389/fphys.2020.533690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the effect of exogenous hydrogen sulfide (H2S) treatment on skeletal muscle contusion. We established a skeletal muscle contusion model (S group) and an H2S treated of skeletal muscle contusion model (H2S group). Gastrocnemius muscles (GMs) were collected at day 1, day 5, day 10, and day 15 after injury, and comprehensive morphological and genetic analyses was conducted. H2S treatment reduced M1 macrophage (CD68), profibrotic cytokines (TGF-β), pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6), chemokines (CCL2, CCR2, CCL3, CCL5, CXCL12, and CXCR4), matrix metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-14) and oxidative stress factor (gp91phox) expression levels, improved M2 macrophage (CD206) level. Thus, exogenous H2S treatment reduced inflammation and oxidative stress, attenuated skeletal muscle fibrosis, and partly improved skeletal muscle injury.
Collapse
Affiliation(s)
- Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Gaoyang Dong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xin Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on the Skeletal Muscle Microenvironment During Cancer Cachexia. Front Physiol 2020; 11:1037. [PMID: 32982782 PMCID: PMC7489038 DOI: 10.3389/fphys.2020.01037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Progressive weight loss combined with skeletal muscle atrophy, termed cachexia, is a common comorbidity associated with cancer that results in adverse consequences for the patient related to decreased chemotherapy responsiveness and increased mortality. Cachexia's complexity has provided a barrier for developing successful therapies to prevent or treat the condition, since a large number of systemic disruptions that can regulate muscle mass are often present. Furthermore, considerable effort has focused on investigating how tumor derived factors and inflammatory mediators directly signal skeletal muscle to disrupt protein turnover regulation. Currently, there is developing appreciation for understanding how cancer alters skeletal muscle's complex microenvironment and the tightly regulated interactions between multiple cell types. Skeletal muscle microenvironment interactions have established functions in muscle response to regeneration from injury, growth, aging, overload-induced hypertrophy, and exercise. This review explores the growing body of evidence for immune cell modulation of the skeletal muscle microenvironment during cancer-induced muscle wasting. Emphasis is placed on the regulatory network that integrates physiological responses between immune cells with other muscle cell types including satellite cells, fibroblast cells, and endothelial cells to regulate myofiber size and plasticity. The overall goal of this review is to provide an understanding of how different cell types that constitute the muscle microenvironment and their signaling mediators contribute to cancer and chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Brandon N. VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
20
|
Improvement of Skeletal Muscle Regeneration by Platelet-Rich Plasma in Rats with Experimental Chronic Hyperglycemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6980607. [PMID: 32766312 PMCID: PMC7374220 DOI: 10.1155/2020/6980607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Herein, the structural effect of autologous platelet-rich plasma (PRP) on posttraumatic skeletal muscle regeneration in rats with chronic hyperglycemia (CH) was tested. 130 white laboratory male rats divided into four groups (I—control; II—rats with CH; III—rats with CH and PRP treatment; and IV—rats for CH confirmation) were used for the experiment. CH was simulated by streptozotocin and nicotinic acid administration. Triceps surae muscle injury was reproduced by transverse linear incision. Autologous PRP was used in order to correct the possible negative CH effect on skeletal muscle recovery. On the 28th day after the injury, the regenerating muscle fiber and blood vessel number in the CH+PRP group were higher than those in the CH rats. However, the connective tissue area in the CH group was larger than that in the CH+PRP animals. The amount of agranulocytes in the regenerating muscle of the CH rats was lower compared to that of the CH+PRP group. The histological analysis of skeletal muscle recovery in CH+PRP animals revealed more intensive neoangiogenesis compared to that in the CH group. Herewith, the massive connective tissue development and inflammation signs were observed within the skeletal muscle of CH rats. Obtained results suggest that streptozotocin-induced CH has a negative effect on posttraumatic skeletal muscle regeneration, contributing to massive connective tissue development. The autologous PRP injection promotes muscle recovery process in rats with CH, shifting it away from fibrosis toward the complete muscular organ repair.
Collapse
|
21
|
Cannabinoid type 2 receptor manipulates skeletal muscle regeneration partly by regulating macrophage M1/M2 polarization in IR injury in mice. Life Sci 2020; 256:117989. [PMID: 32565250 DOI: 10.1016/j.lfs.2020.117989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
AIMS The beneficial effects of cannabinoid type 2 receptor (CB2R) activation have been verified in various tissue repair processes. Our recent study revealed CB2R activation promotes myogenesis partly through Nrf2 signaling in a mouse skeletal muscle ischemia-reperfusion (IR) injury model. Other relevant mechanisms need to be further elucidated. Macrophages orchestrate tissue regeneration mainly by changing their phenotype and function. The aim of this study was to investigate the role of CB2R in IR-induced skeletal muscle regeneration, focusing on its impact on macrophage polarization and the consequences on myogenesis. MAIN METHODS The effects of CB2R on skeletal muscle regeneration, and the macrophage infiltration and M1/M2 polarization were tested with the IR injury model in wild type (WT) and CB2R knockout (CB2R-KO) mice. The effect of CB2R on peritoneal macrophage polarization, and its impact on the myoblasts differentiation was evaluated by co-culture experiments in vitro. KEY FINDINGS The present study revealed the myofiber regeneration was hindered in the CB2R-KO mice. The infiltration of M1 macrophages and relevant markers' protein expression were enhanced in the CB2R-KO mice, while that of M2 macrophages was decreased compared with the WT mice. The in vitro studies further demonstrated that the absence of CB2R promoted M1 polarization while inhibited M2 polarization. The promoted M1 polarization and retarded M2 polarization in CB2R-KO macrophages hindered myoblasts differentiation. SIGNIFICANCE Overall, these results suggested CB2R plays a beneficial effect on skeletal muscle regeneration partly by regulating macrophage M1/M2 polarization after IR injury in mice.
Collapse
|
22
|
Ferreira LAB, Dos Reis SB, do Nascimento da Silva E, Cadore S, Bernardes JDS, Durán N, de Jesus MB. Thiol-antioxidants interfere with assessing silver nanoparticle cytotoxicity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102130. [PMID: 31760163 DOI: 10.1016/j.nano.2019.102130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Many studies have shown that silver nanoparticles (AgNP) induce oxidative stress, and it is commonly assumed that this is the main mechanism of AgNP cytotoxicity. Most of these studies rely on antioxidants to establish this cause-and-effect relationship; nevertheless, details on how these antioxidants interact with the AgNP are often overlooked. This work aimed to investigate the molecular mechanisms underlying the use of antioxidants with AgNP nanoparticles. Thus, we studied the molecular interaction between the thiol-antioxidants (N-acetyl-L-Cysteine, L-Cysteine, and glutathione) or non-thiol-antioxidants (Trolox) with chemically and biologically synthesized AgNP. Both antioxidants could mitigate ROS production in Huh-7 hepatocarcinoma cells, but only thiol-antioxidants could prevent the cytotoxic effect, directly binding to the AgNP leading to aggregation. Our findings show that data interpretation might not be straightforward when using thiol-antioxidants to study the interactions between metallic nanoparticles and cells. This artifact exemplifies potential pitfalls that could hinder the progress of nanotechnology and the understanding of the nanotoxicity mechanism.
Collapse
Affiliation(s)
- Luiz A B Ferreira
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Samara Bonesso Dos Reis
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Emanueli do Nascimento da Silva
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Department of Chemistry, Institute of Exact and Biologic Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Solange Cadore
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | - Nelson Durán
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo B de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
23
|
Ruparelia AA, Ratnayake D, Currie PD. Stem cells in skeletal muscle growth and regeneration in amniotes and teleosts: Emerging themes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e365. [PMID: 31743958 DOI: 10.1002/wdev.365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a contractile, postmitotic tissue that retains the capacity to grow and regenerate throughout life in amniotes and teleost. Both muscle growth and regeneration are regulated by obligate tissue resident muscle stem cells. Given that considerable knowledge exists on the myogenic process, recent studies have focused on examining the molecular markers of muscle stem cells, and on the intrinsic and extrinsic signals regulating their function. From this, two themes emerge: firstly, muscle stem cells display remarkable heterogeneity not only with regards to their gene expression profile, but also with respect to their behavior and function; and secondly, the stem cell niche is a critical regulator of muscle stem cell function during growth and regeneration. Here, we will address the current understanding of these emerging themes with emphasis on the distinct processes used by amniotes and teleost, and discuss the challenges and opportunities in the muscle growth and regeneration fields. This article is characterized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Early Embryonic Development > Development to the Basic Body Plan Vertebrate Organogenesis > Musculoskeletal and Vascular.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Abudupataer M, Zou W, Zhang W, Ding S, Zhou Z, Chen J, Li H, Zhang Z, Wang C, Ge J, Hong T, Yang X. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J Cell Mol Med 2019; 23:8392-8409. [PMID: 31600036 PMCID: PMC6850925 DOI: 10.1111/jcmm.14720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/27/2023] Open
Abstract
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc−/−) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc−/− enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihong Zou
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheliang Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Zheng L, Liu X, Chen P, Xiao W. Expression and role of lncRNAs in the regeneration of skeletal muscle following contusion injury. Exp Ther Med 2019; 18:2617-2627. [PMID: 31572510 PMCID: PMC6755471 DOI: 10.3892/etm.2019.7871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Studies performed previously have indicated that long non-coding RNAs (lncRNAs) may be involved in skeletal muscle regeneration; however, the roles of lncRNAs during the repair of skeletal muscle contusion remain unclear. The present study established a mouse skeletal muscle contusion injury model to identify the roles of lncRNAs that are specifically enriched in the skeletal muscle, namely metastasis-associated lung adenocarcinoma transcript 1 (Malat1), H19, myogenesis-associated lnc (lnc-mg), long intergenic non-protein coding RNAs (linc)-muscle differentiation 1 (linc-MD1), linc-yin yang 1 (linc-YY1) and sirtuin 1-antisense (Sirt1-AS). Morphological analyses revealed that fibrotic scars and regenerating myofibers were formed in the muscle following contusion injury. Gene expression was analyzed by reverse transcription-quantitative polymerase chain reaction. The data revealed that the expression of inflammatory cytokines, myogenic regulatory factors and angiogenic factors increased significantly following skeletal muscle contusion. Additionally, various lncRNAs, including Malat1, H19, lnc-mg, linc-MD1, linc-YY1 and Sirt1-AS were also upregulated. Correlation was also observed between lncRNAs and regulatory factors for skeletal muscle regeneration including transforming growth factor-β1, myogenic differentiation, myogenin, myogenic factor 5 (myf5), myf6, hypoxia-inducible factor-1α and angiopoietin 1. In conclusion, lncRNAs may serve important roles in the regeneration of skeletal muscle following contusion injury, which provides a promising therapy avenue for muscle injury.
Collapse
Affiliation(s)
- Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
26
|
Mueller AL, Bloch RJ. Skeletal muscle cell transplantation: models and methods. J Muscle Res Cell Motil 2019; 41:297-311. [PMID: 31392564 DOI: 10.1007/s10974-019-09550-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Xenografts of skeletal muscle are used to study muscle repair and regeneration, mechanisms of muscular dystrophies, and potential cell therapies for musculoskeletal disorders. Typically, xenografting involves using an immunodeficient host that is pre-injured to create a niche for human cell engraftment. Cell type and method of delivery to muscle depend on the specific application, but can include myoblasts, satellite cells, induced pluripotent stem cells, mesangioblasts, immortalized muscle precursor cells, and other multipotent cell lines delivered locally or systemically. Some studies follow cell engraftment with interventions to enhance cell proliferation, migration, and differentiation into mature muscle fibers. Recently, several advances in xenografting human-derived muscle cells have been applied to study and treat Duchenne muscular dystrophy and Facioscapulohumeral muscular dystrophy. Here, we review the vast array of techniques available to aid researchers in designing future experiments aimed at creating robust muscle xenografts in rodent hosts.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
LoPresti ST, Popovic B, Kulkarni M, Skillen CD, Brown BN. Free radical-decellularized tissue promotes enhanced antioxidant and anti-inflammatory macrophage response. Biomaterials 2019; 222:119376. [PMID: 31445321 DOI: 10.1016/j.biomaterials.2019.119376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress leads to the progression of many diseases including chronic wounds, atherosclerosis, stroke and cancer. The modification of biomolecules with reactive nitrogen or oxygen species has been shown to trigger oxidative stress pathways that are beneficial for healing. Extracellular matrix scaffolds have been used successfully in reconstructive applications due to the beneficial host response they induce. To tailor extracellular matrix scaffolds to enhance antioxidant response, ECM were prepared using reactive nitrogen or oxygen species. These scaffolds were shown to be effectively decellularized and possess oxidative or nitroxidative protein modifications. Macrophage responses in vitro and in an in vivo muscle injury model were shown to have enhanced antioxidant phenotypes without impairment of long-term remodeling. These observations suggest that ECM decellularized with reactive oxygen or nitrogen species could provide better outcomes for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- S T LoPresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, United States
| | - B Popovic
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - M Kulkarni
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - C D Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - B N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
28
|
Deficient Skeletal Muscle Regeneration after Injury Induced by a Clostridium perfringens Strain Associated with Gas Gangrene. Infect Immun 2019; 87:IAI.00200-19. [PMID: 31138614 DOI: 10.1128/iai.00200-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Gas gangrene, or clostridial myonecrosis, is usually caused by Clostridium perfringens and may occur spontaneously in association with diabetes mellitus, peripheral vascular disease, or some malignancies but more often after contamination of a deep surgical or traumatic lesion. If not controlled, clostridial myonecrosis results in multiorgan failure, shock, and death, but very little is known about the muscle regeneration process that follows myonecrosis when the infection is controlled. In this study, we characterized the muscle regeneration process after myonecrosis caused in a murine experimental infection with a sublethal inoculum of C. perfringens vegetative cells. The results show that myonecrosis occurs concomitantly with significant vascular injury, which limits the migration of inflammatory cells. A significant increase in cytokines that promote inflammation explains the presence of an inflammatory infiltrate; however, impaired interferon gamma (IFN-γ) expression, a reduced number of M1 macrophages, deficient phagocytic activity, and a prolongation of the permanence of inflammatory cells lead to deficient muscle regeneration. The expression of transforming growth factor β1 (TGF-β1) agrees with the consequent accumulation of collagen in the muscle, i.e., fibrosis observed 30 days after infection. These results provide new information on the pathogenesis of gas gangrene caused by C. perfringens, shed light on the basis of the deficient muscle regenerative activity, and may open new perspectives for the development of novel therapies for patients suffering from this disease.
Collapse
|
29
|
Reidy PT, Dupont-Versteegden EE, Drummond MJ. Macrophage Regulation of Muscle Regrowth From Disuse in Aging. Exerc Sport Sci Rev 2019; 47:246-250. [DOI: 10.1249/jes.0000000000000201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Liu X, Zeng Z, Zhao L, Chen P, Xiao W. Impaired Skeletal Muscle Regeneration Induced by Macrophage Depletion Could Be Partly Ameliorated by MGF Injection. Front Physiol 2019; 10:601. [PMID: 31164836 PMCID: PMC6534059 DOI: 10.3389/fphys.2019.00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle injury is one of the most common injuries in sports medicine. Our previous study found that macrophage depletion impairs muscle regeneration and that mechano growth factor (MGF) may play an important role in this process. However, whether injection of MGF protects against impaired muscle regeneration after macrophage depletion has not been explored. Therefore, we generated a muscle contusion and macrophage depletion mouse model and injected MGF into the damaged muscle. Comprehensive morphological and genetic analyses were performed on the injured skeletal muscle after macrophage depletion and MGF injection. The results showed that injection of MGF did not exert a protective effect on muscle fiber regeneration; however, it did decrease fibrosis in the contused skeletal muscle after macrophage depletion. Moreover, MGF injection decreased the expression of muscle inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and TGF-β), chemokines (CCL2, CCL5, and CXCR4), oxidative stress factors (gp91phox) and matrix metalloproteinases (MMP-1, MMP-2, MMP-9, MMP-10, and MMP-14). These results suggest that the impairment of skeletal muscle regeneration induced by macrophage depletion could be partly ameliorated by MGF injection and that inflammatory cytokines, oxidative stress factors, chemokines, and MMP may be involved in this process.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,College of Physical Education, Jinggangshan University, Jiangxi, China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
31
|
Liu X, Zheng L, Zhou Y, Chen Y, Chen P, Xiao W. BMSC Transplantation Aggravates Inflammation, Oxidative Stress, and Fibrosis and Impairs Skeletal Muscle Regeneration. Front Physiol 2019; 10:87. [PMID: 30814953 PMCID: PMC6382023 DOI: 10.3389/fphys.2019.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contusion is one of the most common muscle injuries in sports medicine and traumatology. Bone marrow mesenchymal stem cell (BMSC) transplantation has been proposed as a promising strategy to promote skeletal muscle regeneration. However, the roles and underlying mechanisms of BMSCs in the regulation of skeletal muscle regeneration are still not completely clear. Here, we investigated the role of BMSC transplantation after muscle contusion. BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. Comprehensive morphological and genetic analyses were performed after BMSC transplantation. BMSC transplantation exacerbated muscle fibrosis and inflammation, as evidenced by increased leukocyte and macrophage infiltration, increased inflammatory cytokines and chemokines, and increased matrix metalloproteinases. BMSC transplantation also increased muscle oxidative stress. Overall, BMSC transplantation aggravated inflammation, oxidative stress and fibrosis and impaired skeletal muscle regeneration. These results, shed new light on the role of BMSCs in regenerative medicine and indicate that caution is needed in the application of BMSCs for muscle injury.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongzhan Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
32
|
O’Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J 2018; 11:810-821. [PMID: 30524716 PMCID: PMC6275451 DOI: 10.1093/ckj/sfy052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle wasting is a common feature of chronic kidney disease (CKD) and is clinically relevant due to associations with quality of life, physical functioning, mortality and a number of comorbidities. Satellite cells (SCs) are a population of skeletal muscle progenitor cells responsible for accrual and maintenance of muscle mass by providing new nuclei to myofibres. Recent evidence from animal models and human studies indicates CKD may negatively affect SC abundance and function in response to stimuli such as exercise and damage. The aim of this review is to collate recent literature on the effect of CKD on SCs, with a particular focus on the myogenic response to exercise in this population. Exercise is widely recognized as important for the maintenance of healthy skeletal muscle mass and is increasingly advocated in the care of a number of chronic conditions. Therefore a greater understanding of the impact of uraemia upon SCs and the possible altered myogenic response in CKD is required to inform strategies to prevent uraemic cachexia.
Collapse
Affiliation(s)
- Tom F O’Sullivan
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester Trust, Leicester, UK
| | - Emma L Watson
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
33
|
Wang X, Zhao D, Cui Y, Lu S, Gao D, Liu J. Proinflammatory macrophages impair skeletal muscle differentiation in obesity through secretion of tumor necrosis factor‐α via sustained activation of p38 mitogen‐activated protein kinase. J Cell Physiol 2018; 234:2566-2580. [DOI: 10.1002/jcp.27012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Xueqiang Wang
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Daina Zhao
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Yajuan Cui
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Shemin Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an China
| | - Dan Gao
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Jiankang Liu
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| |
Collapse
|
34
|
Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell 2018; 46:135-143. [PMID: 30016618 PMCID: PMC6075730 DOI: 10.1016/j.devcel.2018.06.018] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Skeletal muscle has an extraordinary regenerative capacity due to the activity of tissue-specific muscle stem cells. Consequently, these cells have received the most attention in studies investigating the cellular processes of skeletal muscle regeneration. However, efficient capacity to rebuild this tissue also depends on additional cells in the local milieu, as disrupting their normal contributions often leads to incomplete regeneration. Here, we review these additional cells that contribute to the regenerative process. Understanding the complex interactions between and among these cell populations has the potential to lead to therapies that will help promote normal skeletal muscle regeneration under conditions in which this process is suboptimal.
Collapse
Affiliation(s)
- Michael N Wosczyna
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
35
|
Sun Y, Sun X, Liu S, Liu L, Chen J. The overlap between regeneration and fibrosis in injured skeletal muscle is regulated by phosphatidylinositol 3-kinase/Akt signaling pathway - A bioinformatic analysis based on lncRNA microarray. Gene 2018; 672:79-87. [PMID: 29870770 DOI: 10.1016/j.gene.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/05/2018] [Accepted: 06/01/2018] [Indexed: 02/05/2023]
Abstract
Injured skeletal muscle would go through a sequence of the pathological phases of degeneration, myogenesis and fibrosis. Growing evidence indicated that fibrotic and myogenic phases might overlap within the injured skeletal muscle in the early time after injury. However, the mechanism underlying this overlapping remains unclear. Here, we performed an lncRNA microarray to identify the activated pathways in mice muscle seven days after contusion. KEGG analysis indicated that phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling cascade was predicted to be activated by lncRNAs. The top genes targeted by lncRNAs in PI3K/Akt signaling were subunits of laminin, collagen 5, and collagen 6, which participated in either myogenic or fibrotic process. Reverse transcriptase-polymerase chain reaction analysis and immunohistochemical stain further confirmed the prediction in silico. These results suggested that the overlap might be related to an activated PI3K/Akt pathway by lncRNA regulation.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 2018; 285:1973-1984. [PMID: 29473995 DOI: 10.1111/febs.14417] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/27/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Luiz Augusto Perandini
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Brazil
| | - Diego da Silva Lutkemeyer
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.,Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Department of Medicine, Federal University of Sao Paulo, Brazil
| |
Collapse
|
37
|
Liu X, Zeng Z, Zhao L, Xiao W, Chen P. Changes in inflammatory and oxidative stress factors and the protein synthesis pathway in injured skeletal muscle after contusion. Exp Ther Med 2017; 15:2196-2202. [PMID: 29434825 DOI: 10.3892/etm.2017.5625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Injury of skeletal muscle, and particularly mechanically-induced damage, including contusion injury, frequently occurs in contact sports as well as in sports with accidental contact. Although the mechanisms of skeletal muscle regeneration are well understood, those involved in muscle contusion are not. A total of 40 male mice were randomly divided into control (n=8) and muscle contusion (n=32) groups. A muscle contusion model was established by weight-drop injury. Subsequently, the gastrocnemius muscles in the two groups were harvested at different times (1, 3, 7 and 14 days) post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (H&E) stains. Furthermore, quantitative polymerase chain reaction and western blotting were used to analyze inflammatory cytokines, oxidative stress factors and the Akt/mechanistic target of rapamycin (mTOR) pathway. The results revealed that pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interferon-γ (IFN-γ)] increased significantly at day 1 and 3 and still exhibited high levels of expression at days 7 and 14 (except IL-6) post-injury. Additionally, the anti-inflammatory cytokine IL-10 increased significantly at 1, 3 and 7 days and reached its peak levels at 7 days post-injury. It was revealed that gp91phox mRNA increased significantly at all time points and gp91phox protein increased significantly at day 3 post-injury. Furthermore, it was observed that p-Akt/Akt increased significantly at 1 day post-injury. P-mTOR/mTOR increased significantly at day 1 and 7, and p-p70s6k/p70s6k and P-4EBP1/4EBP1 increased significantly at 1, 3, 7 and 14 days post-injury. These results indicate that inflammatory and oxidative stress factors and the Akt/mTOR pathway may serve important roles in the regeneration of muscle contusion. In addition, certain inflammatory factors and oxidative stress factors maintained high levels of expression at 14 days after injury, indicating that the healing process of muscle was still not fully achieved at this time.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,College of Physical Education, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
38
|
Liu X, Liu Y, Zhao L, Zeng Z, Xiao W, Chen P. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration. Cell Biol Int 2017; 41:228-238. [PMID: 27888539 DOI: 10.1002/cbin.10705] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023]
Abstract
Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China.,Department of Exercise Science, Shenyang Sport University, Shenyang, 110001, China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|