1
|
Wu J, Sun J, Liu M, Zhang X, Kong L, Ma L, Jiang S, Liu X, Ma W. Botany, Traditional Use, Phytochemistry, Pharmacology and Quality Control of Taraxaci herba: Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1113. [PMID: 39338278 PMCID: PMC11434673 DOI: 10.3390/ph17091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Taraxaci herba, as a traditional Chinese medicine, is the name of the Taraxacum genus in the Asteraceae family. Documented in the Tang Herbal Medicine (Tang Dynasty, AD 657-659), its medicinal properties cover a wide range of applications such as acute mastitis, lung abscess, conjunctival congestion, sore throat, damp-heat jaundice, and vision improvement. In the Chinese Pharmacopoeia (Edition 2020), more than 40 kinds of China-patented drugs containing Taraxaci herba were recorded. This review explores the evolving scientific understanding of Taraxaci herba, covering facets of ethnopharmacology, botany, phytochemistry, pharmacology, artificial cultivation, and quality control. In particular, the chemical constituents and pharmacological research are reviewed. Taraxaci herba has been certified as a traditional medicine plant, and its flavonoids, phenolic acids, and terpenoids have been identified and separated, which include Chicoric acid, taraxasterol, Taraxasteryl acetate, Chlorogenic acid, isorhamnetin, and luteolin; they are responsible for anti-inflammatory, antioxidant, antibacterial, anti-tumor, and anti-cancer activities. These findings validate the traditional uses of Taraxaci herba and lay the groundwork for further scientific exploration. The sources used in this study include Web of Science, Pubmed, the CNKI site, classic monographs, the Chinese Pharmacopoeia, the Chinese Medicine Dictionary, and doctoral and master's theses.
Collapse
Affiliation(s)
- Jianhao Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Jialin Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Meiqi Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Xiaozhuang Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Lengleng Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- School of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| |
Collapse
|
2
|
Zhang Y, BinShaari R, Nawi MABA, Bin Hassan A, Cui C. Pharmacological Action and Research Progress of Taraxasterol. Curr Pharm Biotechnol 2024; 25:1767-1777. [PMID: 38178677 DOI: 10.2174/0113892010276692231220103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Primarily sourced from Asteraceae family herbs such as the Dandelion, Taraxasterol is a pentacyclic triterpenoid lauded for its extensive biological functionalities. Its therapeutic potency is demonstrated in various disease models, encompassing enteritis, arthritis, acute hepatic injury, and pneumonia. Scientific literature underscores its anti-inflammatory, antioxidant, and antineoplastic attributes. The primary aim of this study is to thoroughly explore the diseasemodulating mechanisms and effects of taraxasterol. We endeavor to provide an exhaustive review of the experimental subjects, intervention components, distinct action modalities, contributing factors, and protein pathway expressions associated with taraxasterol, systematically represented via diagrams and tables. Such a schematic representation encourages a continued academic dialogue concerning taraxasterol's pharmacological characteristics. This review is envisioned as a practical guide for the selection of experimental subjects and methodologies in prospective research. It is intended to further illuminate taraxasterol's pharmacodynamics, thereby offering theoretical and empirical justification for its clinical application.
Collapse
Affiliation(s)
- Yu Zhang
- School of dental sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
- Qilu Medical University, Zibo, China
| | - Ramizu BinShaari
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | | | - Akram Bin Hassan
- School of dental sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Caiyun Cui
- Department of Stomatology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| |
Collapse
|
3
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol 2022; 13:927365. [PMID: 35991893 PMCID: PMC9386448 DOI: 10.3389/fphar.2022.927365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, anti-oxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
- *Correspondence: Fengjuan Jiao,
| | - Zengyue Tan
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Zhonghua Yu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Bojie Zhou
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Lingyan Meng
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xinyue Shi
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Galli C, Sala R, Colangelo MT, Guizzardi S. Tamquam alter idem: formal similarities in a subset of reports on anti-inflammatory compounds in the years 2008–2019. Scientometrics 2022. [DOI: 10.1007/s11192-022-04434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractA literature search on the in vitro testing of anti-inflammatory compounds of natural origin revealed a considerable number of studies adopting a similar template for data reporting in the years up to 2019. Sixty-five such reports appear to have been published between the years 2008 and 2019. Interestingly, this format template was clearly recognizable by a few hallmarks, such as a precise way of plotting cell viability data, extremely consistent endpoints, and the way these were graphically represented. In some instances the similarities extended to some textual features, such as in the case of figure legends. The similarity was so high that chance can be excluded and these studies can be safely assumed to have intentionally followed a template. By 2020, however, no new reports following this format have been published. Although a consistent and reproducible formatting for data reporting may improve report readability, this phenomenon should also be closely scrutinized to assess the rationale why it occurred, the validity of the endpoints that were chosen and why it was then abandoned. The present report reviewed the mean features of this format, traced its origin and its evolution over time, while discussing the limitations of this model.
Collapse
|
7
|
Zhang Y, Fu H, Zhang Y, Wang D, Zhao D, Zhang J, Li M, Wang C. Reparative Effects of Dandelion Fermentation Broth on UVB-Induced Skin Inflammation. Clin Cosmet Investig Dermatol 2022; 15:471-482. [PMID: 35313537 PMCID: PMC8934118 DOI: 10.2147/ccid.s351527] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
Objective To evaluate the efficacy of the dandelion fermentation broth in repairing UVB-induced skin inflammation. Methods Detection of active ingredients in dandelion fermentation broth and water extract. The antioxidant capacity of dandelion fermentation broth was investigated by in vitro antioxidant experiments. The influence of the broth on the content of inflammatory factors interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-1β (IL-1β), and tumor necrosis factor (TNF-α), in human immortalized epidermal cells (HaCaT) is discussed on the basis of a UVB-induced HaCaT damage model. The effects of the broth on the contents of skin barrier-related proteins kallikrein-7 (KLK-7), filaggrin (FLG) and aquaporin (AQP3) in the UVB-induced damage and repair of the HaCaT mechanism are also comprehensively discussed. The effect of DF on the activation of MAPK pathway proteins was detected by PCR. A chicken embryo chorioallantoic membrane test is used to explore the safety of the dandelion fermentation broth. Results The results show that the dandelion fermentation broth is rich inTotal sugar, with good free radical scavenging ability and antioxidant effects; it can regulate the MAPK pathway, reduce the expression of inflammatory factors, adjust the skin barrier factors and good safety. Conclusion Dandelion fermentation broth exhibits repairing effect on UVB-induced skin inflammation.
Collapse
Affiliation(s)
- Yuzhi Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Hao Fu
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yongtao Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Dongdong Wang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Dan Zhao
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Protective Effects of Taraxasterol against Deoxynivalenol-Induced Damage to Bovine Mammary Epithelial Cells. Toxins (Basel) 2022; 14:toxins14030211. [PMID: 35324708 PMCID: PMC8948886 DOI: 10.3390/toxins14030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is one of the most prevalent contaminants in livestock feed and causes very large losses to animal husbandry every year. Taraxasterol, isolated from Taraxacum officinale, has anti-inflammatory, antioxidative stress, and antitumor effects. In the present study, bovine mammary epithelial cells (MAC-T) were used as a model, and different concentrations of taraxasterol (0, 1, 5, 10, and 20 μg/mL) were used to protect against DON-induced cell damage. The results showed that taraxasterol at a concentration of 10 μg/mL significantly increased cell viability. Analysis of lactate dehydrogenase (LDH) levels indicated that taraxasterol substantially decreased LDH release caused by DON. Taraxasterol effectively alleviated the depletion of glutathione (GSH), the increase in the lipid peroxidation of malondialdehyde (MDA), the reduction in total superoxide dismutase (T-SOD) activity, and the decrease in total antioxidant capacity (T-AOC) induced by DON. The results further showed that taraxasterol reduced the accumulation of reactive oxygen species (ROS). Taraxasterol was found to relieve endoplasmic reticulum (ER) stress by suppressing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4) and the transcription factor C/EBP homologous protein (CHOP), and reducing cell apoptosis by suppressing the expression of caspase-3 and Bcl2-associated X (BAX) and upregulating the expression of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2). Our research results indicate that taraxasterol could alleviate DON-induced damage to MAC-T cells.
Collapse
|
9
|
Yang F, Ye XJ, Chen MY, Li HC, Wang YF, Zhong MY, Zhong CS, Zeng B, Xu LH, He XH, Ouyang DY. Inhibition of NLRP3 Inflammasome Activation and Pyroptosis in Macrophages by Taraxasterol Is Associated With Its Regulation on mTOR Signaling. Front Immunol 2021; 12:632606. [PMID: 33679781 PMCID: PMC7925414 DOI: 10.3389/fimmu.2021.632606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Taraxasterol (TAS) is an active ingredient of Dandelion (Taraxacum mongolicum Hand. -Mazz.), a medicinal plant that has long been used in China for treatment of inflammatory disorders. But the underlying mechanism for its therapeutic effects on inflammatory disorders is not completely clear. Inflammasome activation is a critical step of innate immune response to infection and aseptic inflammation. Among the various types of inflammasome sensors that has been reported, NLR family pyrin domain containing 3 (NLRP3) is implicated in various inflammatory diseases and therefore has been most extensively studied. In this study, we aimed to explore whether TAS could influence NLPR3 inflammasome activation in macrophages. The results showed that TAS dose-dependently suppressed the activation of caspase-1 in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin treatment, resulting in reduced mature interleukin-1β (IL-1β) release and gasdermin D (GSDMD) cleavage. TAS greatly reduced ASC speck formation upon the stimulation of nigericin or extracellular ATP. Consistent with reduced cleavage of GSDMD, nigericin-induced pyroptosis was alleviated by TAS. Interestingly, TAS time-dependently suppressed the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 signaling induced by LPS priming. Like TAS, both INK-128 (inhibiting both mTORC1 and mTORC2) and rapamycin (inhibiting mTORC1 only) also inhibited NLRP3 inflammasome activation, though their effects on mTOR signaling were different. Moreover, TAS treatment alleviated mitochondrial damage by nigericin and improved mouse survival from bacterial infection, accompanied by reduced IL-1β levels in vivo. Collectively, by inhibiting the NLRP3 inflammasome activation, TAS displayed anti-inflammatory effects likely through regulation of the mTOR signaling in macrophages, highlighting a potential action mechanism for the anti-inflammatory activity of Dandelion in treating inflammation-related disorders, which warrants further clinical investigation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xun-Jia Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ming-Ye Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hong-Chun Li
- Wuzhongpei Memorial Hospital of Shunde, Foshan, China
| | - Yao-Feng Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mei-Yan Zhong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chun-Su Zhong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Huang T, Wang G, Hu Y, Shi H, Wang K, Yin L, Peng B. Structural and functional abnormalities of penile cavernous endothelial cells result in erectile dysfunction at experimental autoimmune prostatitis rat. JOURNAL OF INFLAMMATION-LONDON 2019; 16:20. [PMID: 31372097 PMCID: PMC6659287 DOI: 10.1186/s12950-019-0224-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023]
Abstract
Background There is growing recognition of the association of CP/CPPS accompany with ED. However, the specific mechanism of action remains unclear. The aim of this study was to investigate structural and functional abnormalities of cavernous endothelial cells in EAP rat, which may result in the ED. Methods we use rat prostate protein extract supplemented with immunoadjuvant to induce EAP rat, ICP and MAP were measured and inflammatory factor infiltration, Akt, eNOS, AR, nNOS and iNOS in the corpus cavernosum were tested. Subsequently, the normal rat and EAP rat cavernosum endothelial cells were purified by MACS, and the metabolism, oxidative stress, MMP, Akt, eNOS, AR and iNOS were evaluated. Results The EAP rat model was successfully constructed. The ratio of max ICP/MAP in EAP rat was significantly lower and TNF-α infiltration in corpus cavernosum was significantly higher than normal rats. Besides, Akt, eNOS and AR were decreased, iNOS was significantly increased. The growth and metabolism of endothelial cells in the EAP rats corpus cavernosum decreased and inflammatory factor mRNA was increased and intracellular oxidative stress was also increased significantly. The MMP of EAP rats cavernosum endothelial cells decreased and the expression of Akt, eNOS and AR were also significantly decreased, iNOS was significantly increased. Conclusion The prostate suffer local inflammatory infiltrate and promotes cytokines infiltrated into corpus cavernosum caused the oxidative stress increases and the metabolism or MMP decreases. In addition, AR, Akt and eNOS expression and phosphorylation are also reduced, thereby inhibiting the diastolic function of the corpus cavernosum, resulting in decreased erectile function.
Collapse
Affiliation(s)
- Tianrun Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Yangyang Hu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| |
Collapse
|