1
|
Elhabal SF, Ghaffar SA, Hager R, Elzohairy NA, Khalifa MM, Mohie PM, Gad RA, Omar NN, Elkomy MH, Khasawneh MA, Abdelaal N. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. Int J Pharm X 2023; 5:100174. [PMID: 36908304 PMCID: PMC9992749 DOI: 10.1016/j.ijpx.2023.100174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.
Collapse
Key Words
- A, aqueous phase
- AMP, Amphotericin-B
- ANOVA, Analysis of variance
- Amphotericin-B
- Atomic force microscopy (AFM)
- BCS, Biopharmaceutical Classification System
- BLF, Bovine Lactoferrin
- CD14, Cluster of differentiation 14
- CK, Creatine kinase
- Candida albicans
- Confocal laser scanning microscopy (CLSM)
- DLS, dynamic light scattering
- DMSO, dimethyl sulfoxide
- DSC, Differential scanning calorimetry
- Draize test
- EDC, ethyl-3-(3-dimethyl aminopropyl) carbodiimide
- EE%, Entrapment efficiency
- FT-IR, Fourier transform infrared
- FT-IR, Fourier-transform infrared spectroscopy
- GRAS, Generally recognized as a safe
- HCE-2, human corneal epithelial cells
- J, steady-state flux
- Kp, permeability coefficient
- LPS, Lipopolysaccharide
- Lactoferrin
- MIC, minimum inhibitory concentration
- NCCLS, National Committee for Clinical Laboratory Standards
- NHS, N-hydroxysuccinimide
- NPs, nanoparticles
- Nanoparticles
- O, organic phase
- P188, Kolliphor®P188
- P407, Poloxamer 407
- PBS, Phosphate buffered saline solution
- PDI, Polydispersity index
- PEG, polyethylene glycol
- PEI, poly-ethylene imine
- PLGA, Poly (lactic-co-glycolic acid)
- PS, Particle size
- Q24, amount penetrated after 24 h
- QR, Quantity retained
- REC, rules of the Study Ethics Committee
- SD, Standard deviations
- SE, Standard error
- SEM, Scanning electron microscope
- TEM, Transmission electron microscopy
- Triblock polymers PLGA-PEG-PEI
- ZP, Zeta potential.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Shrouk A Ghaffar
- Tactical Medical Department, Caduceus Lane Healthcare, Alexandria 21532, Egypt
| | - Raghda Hager
- Department of Medicinal Microbiology and Immunology, Faculty of Medicine King Salman International University, El-Tor, South Siniai, Egypt
| | - Nahla A Elzohairy
- Air Force Specialized Hospital, Cairo 19448, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine, Cairo University, Egypt.,Department of Human Physiology, College of Medicine, King Saud University, 62511, Saudi Arabia
| | - Passant M Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21532, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Nasreen N Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 17551, United Arab Emirates
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Muthu V, Dhooria S, Sehgal IS, Prasad KT, Rudramurthy SM, Aggarwal AN, Chakrabarti A, Agarwal R. Nebulized amphotericin B for preventing exacerbations in allergic bronchopulmonary aspergillosis: A systematic review and meta-analysis. Pulm Pharmacol Ther 2023; 81:102226. [PMID: 37230237 DOI: 10.1016/j.pupt.2023.102226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is complicated by exacerbations in more than one-third of the subjects. Whether nebulized amphotericin B (NAB) therapy prevents ABPA exacerbations remains unclear. OBJECTIVES The primary objective of this systematic review and meta-analysis was to determine the frequency of subjects remaining exacerbation-free, one year after initiating NAB. The key secondary objectives were the time to first exacerbation and the safety of NAB therapy. METHODS We searched the PubMed and Embase databases for studies evaluating ≥5 subjects of ABPA managed with NAB. We report the pooled proportion of ABPA subjects remaining exacerbation free after one year. For the randomized controlled trials (RCTs), we estimate the pooled risk difference (RD) of exacerbation-free status at one year with NAB versus the control arm. RESULTS We included five studies for our analysis; three were observational (n = 28) and two RCTs (n = 160). The pooled proportion (95% confidence interval [CI]) of subjects remaining exacerbation free with NAB at one year was 76% (62-88). The pooled RD (95% CI) of an exacerbation-free status at one year was 0.33 (-0.12 to 0.78) and was not significantly different between the NAB and control arms. The time to first exacerbation was longer with NAB than with the standard therapy. No serious adverse events were reported with NAB. CONCLUSION NAB does not improve exacerbation-free status at one year; however, weak evidence suggests it delays ABPA exacerbations. More research using different dosing regimens is required.
Collapse
Affiliation(s)
- Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Pulmonary Medicine, Doodhadhari Burfani Hospital, Haridwar, Uttarakhand, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
3
|
Serum Cytokines Usefulness for Understanding the Pathology in Allergic Bronchopulmonary Aspergillosis and Chronic Pulmonary Aspergillosis. J Fungi (Basel) 2022; 8:jof8050436. [PMID: 35628692 PMCID: PMC9147526 DOI: 10.3390/jof8050436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) and chronic pulmonary aspergillosis (CPA) are important fungal infections caused by Aspergillus species. An overlap of ABPA and CPA has been reported; therefore, it is critical to determine whether the main pathology is ABPA or CPA and whether antifungals are required. In this study, we investigated whether the serum cytokine profile is useful for understanding the pathology and for differentiating between these diseases. We compared the various serum cytokine levels among healthy subjects and patients diagnosed with asthma, ABPA, or CPA at Nagasaki University Hospital between January 2003 and December 2018. In total, 14 healthy subjects, 19 patients with asthma, 11 with ABPA, and 10 with CPA were enrolled. Interleukin (IL) -5 levels were significantly higher in patients with ABPA than in those with CPA, and IL-33 and tumor necrosis factor (TNF) levels were significantly higher in patients with CPA than in those with asthma (p < 0.05, Dunn’s multiple comparison test). The sensitivity and specificity of the IL-10/IL-5 ratio (cutoff index 2.47) for diagnosing CPA were 70% and 100%, respectively. The serum cytokine profile is useful in understanding the pathology of ABPA and CPA, and the IL-10/IL-5 ratio may be a novel supplemental biomarker for indicating the pathology of CPA.
Collapse
|
4
|
Chang MC, Kuo YJ, Hung KH, Peng CL, Chen KY, Yeh LK. Liposomal dexamethasone-moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. ACTA ACUST UNITED AC 2020; 15:055022. [PMID: 32434164 DOI: 10.1088/1748-605x/ab9510] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infectious keratitis is still one of the major causes of visual impairment and blindness, often affecting developing countries. Eye-drop therapy to reduce disease progression is the first line of treatment for infectious keratitis. The current limitations in controlling ophthalmic infections include rapid precorneal drug loss and the inability to provide long-term extraocular drug delivery. The aim of the present study was to develop a novel ophthalmic formulation to treat corneal infection. The formulation was prepared by constructing moxifloxacin (MFX) and dexamethasone (DEX)-loaded nanostructured lipid carriers (Lipo-MFX/DEX) mixed with a collagen/gelatin/alginate (CGA) biodegradable material (CGA-Lipo-MFX/DEX) for prolonged ocular application. The characteristics of the prepared Lipo-MFX/DEX nanoparticles were as follows: average size, 132.1 ± 73.58 nm; zeta potential, -6.27 ± 4.95 mV; entrapment efficiency, 91.5 ± 3.5%; drug content, 18.1 ± 1.7%. Our results indicated that CGA-Lipo-MFX/DEX could release an effective working concentration in 60 min and sustain the drug release for at least 12 h. CGA-Lipo-MFX/DEX did not produce significant toxicities, but it increased cell numbers when co-cultured with ocular epithelial cells. An animal study also confirmed that CGA-Lipo-MFX/DEX could inhibit pathogen microorganism growth and improve corneal wound healing. Our results suggest that CGA-Lipo-MFX/DEX could be a useful anti-inflammatory formulation for ophthalmological disease treatment.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan
| | | | | | | | | | | |
Collapse
|