1
|
Li Z, Jiang X, Li J, Wang Y. Correlation of Hyaluronic Acid (HA), Syndecan-1 (SDC-1), Heparan Sulfate (HS) With Early Stage End Organ Dysfunction in Sepsis Patients. J Cardiovasc Pharmacol 2025; 85:129-136. [PMID: 39819814 DOI: 10.1097/fjc.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/09/2024] [Indexed: 01/19/2025]
Abstract
ABSTRACT The aim of this study was to explore the relationship between the changes in early degradation products of polysaccharide coatings [such as hyaluronic acid (HA), syndecan-1 (SDC-1), and heparan sulfate (HS)] and the development of organ dysfunction in sepsis patients. We conducted a retrospective analysis on 140 sepsis patients admitted from January 2021 to June 2022, who formed the study group; 100 healthy individuals who underwent health checks during the same period were included as the control group. The study found that the expression levels of HA, SDC-1, and HS on admission and within 24 hours of admission in sepsis patients, as well as the early change rates, were positively correlated with organ dysfunction ( P < 0.05). Through receiver operating characteristic curve analysis, we discovered that the early change rates of HA, SDC-1, and HS have high predictive value for organ dysfunction in sepsis patients, with the combined predictive value being the most significant. The study conclusion points out that the increased levels of HA, SDC-1, HS, and other degradation products of polysaccharide coatings in the early stage of sepsis are positively associated with the occurrence of organ dysfunction. Clinicians can use the early expression changes of these biomarkers to predict the risk of organ dysfunction in sepsis patients, enabling timely implementation of preventive measures that may improve patient outcomes.
Collapse
Affiliation(s)
- Zhengchao Li
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; and
| | - Xingpeng Jiang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; and
| | - Jinghui Li
- Kunming Medical University Affiliated Yan'an Hospital Intensive Care Unit, Kunming City, Yunnan Province, China
| | - Yuzhu Wang
- Kunming Medical University Affiliated Yan'an Hospital Intensive Care Unit, Kunming City, Yunnan Province, China
| |
Collapse
|
2
|
Xu X, Lu Y, Shen R, Fang L. Phillyrin inhibits oxidative stress and neutrophil extracellular trap formation through the KEAP1/NRF2 pathway in gouty arthritis. Immunol Res 2024; 72:1489-1501. [PMID: 39436625 DOI: 10.1007/s12026-024-09548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024]
Abstract
Gouty arthritis (GA) is an inflammatory disorder characterized by deposition of monosodium urate (MSU) crystal in joints. Phillyrin, a natural compound with anti-inflammatory properties, shows promise in mitigating inflammatory responses. This study investigates the therapeutic potential of phillyrin in GA and explores its mechanisms of action. GA was induced in mice via intraarticular MSU injection, and joint inflammation, inflammatory cell infiltration, and their level in serum/tissue were assessed. Key proteins in the NF-κB and NLRP3 pathways were examined using western blot analysis. The impact of phillyrin on oxidative stress, neutrophil extracellular trap (NET) formation, and neutrophil accumulation was evaluated by measuring CD11b + Ly6G + cells, MPO, CitH3, extracellular DNA ratio, and oxidative stress markers. In vitro studies assessed the effects of phillyrin on oxidative stress, cell viability, cytokine production, and NET formation in MSU-treated neutrophils. The KEAP1/NRF2 pathway's role was analyzed using ML385, an NRF2 inhibitor. Phillyrin significantly reversed MSU-induced ankle swelling and inflammatory cell infiltration in joint tissues. It suppressed pro-inflammatory cytokines and proteins in the NF-κB and NLRP3 pathways. Phillyrin reduced neutrophil infiltration, evidenced by lower MPO activity and NET formation, marked by reduced CitH3 expression. In vitro, phillyrin inhibited inflammatory marker expression and NET formation without affecting cell viability. It also restored antioxidant enzyme levels and reduced ROS production, regulating the KEAP1/NRF2 pathway, enhancing NRF2 expression and stability. These effects were reversed by NRF2 inhibition with ML385. Phillyrin alleviates GA by reducing joint inflammation, inhibiting NET formation, and suppressing oxidative stress through NRF2 modulation.
Collapse
Affiliation(s)
- Xiangfeng Xu
- Department of Rheumatology and Immunology, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road Lincheng New District, Zhoushan, 316021, Zhejiang, China
| | - Yao Lu
- Department of Rheumatology and Immunology, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road Lincheng New District, Zhoushan, 316021, Zhejiang, China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Wesstern Medicine, Shanghai University of Traditional Chinese Medicine, Hongkou District, No. 110 Ganhe Road, Shanghai, 200437, China.
| | - Li Fang
- Department of Rheumatology and Immunology, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road Lincheng New District, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
3
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
4
|
Fu CF, Li JL, Chen JW, Liang H, Zhao WR, He SY, Ma XW, Yang XF, Wang HL. Mechanism and therapeutic potential of traditional Chinese medicine extracts in sepsis. Front Pharmacol 2024; 15:1365639. [PMID: 39021837 PMCID: PMC11251979 DOI: 10.3389/fphar.2024.1365639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.
Collapse
Affiliation(s)
- Chen-Fei Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian-Long Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Hao Liang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen-Rui Zhao
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Shi-Yu He
- Shenzhen Pingle Orthopedic Hospital, Shenzhen, China
| | - Xiao-Wei Ma
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Fan Yang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - He-Lin Wang
- Donghuashi Community Health Service Center, Beijing, China
| |
Collapse
|
5
|
Meng Y, Liu Y, Fu M, Hou Z, Wang Z. Clinical characteristics of elderly hip fracture patients with chronic cerebrovascular disease and construction of a clinical predictive model for perioperative pneumonia. Orthop Traumatol Surg Res 2024; 110:103821. [PMID: 38266670 DOI: 10.1016/j.otsr.2024.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION The recovery of cerebrovascular disease (CVD) will increase the incidence of perioperative pneumonia (POP). However, there is limited research on POP in elderly patients with hip fractures complicated by CVD. Therefore, our research focuses on the following two issues: (1) What are the clinical features of elderly patients with hip fractures combined with CVD? (2) What are the predictive factors for the occurrence of POP in such patients? HYPOTHESIS Male, femoral neck fracture and hypoalbuminemia can be predictive factors for the development of POP after hip fracture in CVD patients. MATERIAL AND METHODS This is a nested case-control study that included patients aged 65 to 105 years with CVD who had a hip fracture between January 2021 and January 2023. According to the occurrence of POP, they were divided into case group and control group. Collecting data includes demographic information, clinical data, and surgical information. Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analyses were used to select variables. The constructed predictive model was transformed into a nomogram. Predictive performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis (DCA). RESULTS We ultimately included 714 patients, 69.3% female, with a median age of 80 years. Asymptomatic cerebral infarction (ACI) is the most common CVD (55.7%). More patients developed intertrochanteric fractures than femoral neck fractures (57.1 vs. 42.9%). In total, 606 patients (84.9%) underwent surgery. The most common perioperative complications were anemia (76.9%) and hypoalbuminemia (71.8%). POP (20.0%) was more common preoperatively (89.5%). Factors such as fracture type, surgical wait time, implant used for surgery, and anesthesia type did not differ between the presence or absence of postoperative pneumonia. 143 patients with POP served as the case group. Five hundred and seventy one patients did not develop POP and served as the control group. The predictors of POP were male (OR 1.699,95%CI 1.150-2.511, p<0.05), femoral neck fracture (OR 2.182,95%CI 1.491-3.192, p<0.05), and hypoalbuminemia (OR 3.062, 95%CI 1.833-5.116, p<0.05). This model has good discrimination, calibration, and clinical practicality. DISCUSSION In this study, we constructed a clinical prediction model for the occurrence of POP in CVD combined with hip fracture in the elderly, with risk factors including gender, fracture type and perioperative hypoproteinemia. Therefore, we can take effective preventive measures against the occurrence of POP in patients with these factors in our clinical work. LEVEL OF PROOF IV; nested case-control study.
Collapse
Affiliation(s)
- Yao Meng
- Department of Geriatric Orthopedics, Hebei Medical University Third Hospital, 050051 Shijiazhuang, Hebei, People's Republic of China
| | - Yan Liu
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Mingming Fu
- Department of Geriatric Orthopedics, Hebei Medical University Third Hospital, 050051 Shijiazhuang, Hebei, People's Republic of China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People's Republic of China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (Hebei Medical University Third Hospital), 050051 Shijiazhuang, Hebei, People's Republic of China
| | - Zhiqian Wang
- Department of Geriatric Orthopedics, Hebei Medical University Third Hospital, 050051 Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Ohata K, Sugaya T, Nguyen HN, Arai K, Hatanaka Y, Uno K, Tohma M, Uechi T, Sekiguchi K, Oikawa T, Nagabukuro H, Kuniyeda K, Kamijo-Ikemori A, Suzuki-Kemuriyama N, Nakae D, Noiri E, Miyajima K. Urinary liver-type fatty acid binding protein is a biomarker reflecting renal damage and the ameliorative effect of drugs at an early stage of histone-induced acute kidney injury. Nephrology (Carlton) 2024; 29:117-125. [PMID: 37950597 DOI: 10.1111/nep.14254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
AIM Circulated histones play a crucial role in the pathogenesis of infectious diseases and severe trauma, and it is one of the potential molecular targets for therapeutics. Recently, we reported that histone is one of the causative agents for urinary L-FABP increase. However, the mechanism is still unclear, especially in severe cases. We further investigated the mechanism of urinary L-FABP increase using a more severe mouse model with histone-induced kidney injury. This study also aims to evaluate the therapeutic responsiveness of urinary L-FABP as a preliminary study. METHODS Human L-FABP chromosomal transgenic mice were administrated 30 mg/kg histone from a tail vein with a single dose. We also performed a comparative study in LPS administration model. For the evaluation of the therapeutic responsiveness of urinary L-FABP, we used heparin and rolipram. RESULTS The histological change with cast formation as a characteristic of the models was observed in proximal tubules. Urinary L-FABP levels were significantly elevated and these levels tended to be higher in those with more cast formation. Heparin and rolipram had the ameliorative effect of the cast formation induced by histone and urinary L-FABP levels significantly decreased. CONCLUSION Histone is one of the causative agents for the increase of urinary L-FABP at an early stage of AKI. In addition, it suggested that urinary L-FABP may be useful as a subclinical AKI marker reflecting kidney damage induced by histone. Furthermore, urinary L-FABP reflected the degree of the damage after the administration of therapeutic agents such as heparin and PDE4 inhibitor.
Collapse
Affiliation(s)
- Keiichi Ohata
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
- CMIC Holdings Co., Ltd, Tokyo, Japan
- Timewell Medical Co., Ltd, Tokyo, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
- Timewell Medical Co., Ltd, Tokyo, Japan
| | - Hanh Nhung Nguyen
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Karin Arai
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuri Hatanaka
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Kinuko Uno
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Marika Tohma
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Teppei Uechi
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Keita Sekiguchi
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Tsuyoshi Oikawa
- CMIC Holdings Co., Ltd, Tokyo, Japan
- Timewell Medical Co., Ltd, Tokyo, Japan
| | | | | | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, Chiba, Japan
| | - Eisei Noiri
- National Center Biobank Network, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
7
|
Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, Tong X, Han R. Phillyrin: an adipose triglyceride lipase inhibitor supported by molecular docking, dynamics simulation, and pharmacological validation. J Mol Model 2024; 30:68. [PMID: 38347278 DOI: 10.1007/s00894-024-05875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
CONTEXT Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity. METHODS The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.
Collapse
Affiliation(s)
- Chenyu Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | - Lanmeng Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | - Jing Xu
- School of Life Sciences, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | | | - Tongsheng Wang
- School of Life Sciences, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | - Fangping Du
- Jinzhai County Jinshanzhai Edible and Pharmaceutical Fungi Plantation Co. Ltd., Lu'an, 237300, Jinzhai, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Lu'an, 237300, China.
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
| |
Collapse
|
8
|
Li C, Wu M, Zhang H, Zhu X, Fu L, Wang S, Lu M, Zhong D, Ding Y. Safety, tolerability and pharmacokinetics of forsythin in healthy subjects: a double-blinded, placebo-controlled single-dose and multiple-dose escalation and food effect study. Ann Med 2023; 55:2274512. [PMID: 37980573 PMCID: PMC10836277 DOI: 10.1080/07853890.2023.2274512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Forsythin, an active compound from Forsythiae Fructus, has the potential to treat the common cold and influenza through its antipyretic-analgesic, anti-inflammatory and antiviral effects. The safety, tolerability and pharmacokinetic (PK) profile of forsythin were evaluated in healthy Chinese subjects. METHODS This phase 1a study included three parts: double-blind, randomized, placebo-controlled single-ascending-dose (SAD) (50, 100, 200, 400, 600 or 800 mg), food effect investigation (100 mg) and multiple-ascending-dose (MAD) (50, 100 or 200 mg TID for 5 days). RESULTS Forsythin is safe and tolerable in healthy Chinese subjects. The rates of adverse events (AEs) in the forsythin cohort were similar to those in the placebo cohort. Forsythin is well-absorbed after single or multiple doses and is extensively metabolized. The primary metabolites were aglycone M1, M1 sulphate (M2) and M1 glucuronide (M7). Exposure to forsythin (100 mg) was higher after food intake by approximately 1.4-fold, whereas M2 and M7 did not change. The steady state was reached around three days in the MAD study. Forsythin, M2 and M7 accumulation on day 5 was 1, 3 and 2, respectively. CONCLUSIONS The safety and PK profiles of forsythin support further evaluation of its efficacy in individuals with the common cold or influenza.
Collapse
Affiliation(s)
- Cuiyun Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Min Wu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Li Fu
- Dalian Fusheng Institute of Natural Medicine, Dalian, China
| | - Shuo Wang
- Dalian Fusheng Institute of Natural Medicine, Dalian, China
| | - Mingming Lu
- Dalian Fusheng Institute of Natural Medicine, Dalian, China
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
9
|
Li JC, Wang LJ, Feng F, Chen TT, Shi WG, Liu LP. Role of heparanase in sepsis‑related acute kidney injury (Review). Exp Ther Med 2023; 26:379. [PMID: 37456170 PMCID: PMC10347300 DOI: 10.3892/etm.2023.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis-related acute kidney injury (S-AKI) is a common and significant complication of sepsis in critically ill patients, which can often only be treated with antibiotics and medications that reduce S-AKI symptoms. The precise mechanism underlying the onset of S-AKI is still unclear, thus hindering the development of new strategies for its treatment. Therefore, it is necessary to explore the pathogenesis of S-AKI to identify biomarkers and therapeutic targets for its early diagnosis and treatment. Heparanase (HPA), the only known enzyme that cleaves the side chain of heparan sulfate, has been widely studied in relation to tumor metabolism, procoagulant activity, angiogenesis, inflammation and sepsis. It has been reported that HPA plays an important role in the progression of S-AKI. The aim of the present review was to provide an overview of the function of HPA in S-AKI and to summarize its underlying molecular mechanisms, including mediating inflammatory response, immune response, autophagy and exosome biogenesis. It is anticipated that emerging discoveries about HPA in S-AKI will support HPA as a potential biomarker and therapeutic target to combat S-AKI.
Collapse
Affiliation(s)
- Jian-Chun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lin-Jun Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fei Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ting-Ting Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Gui Shi
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
10
|
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact Mater 2023; 22:141-167. [PMID: 36203963 PMCID: PMC9526023 DOI: 10.1016/j.bioactmat.2022.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there are no clinical drugs available to treat acute kidney injury (AKI). Given the high prevalence and high mortality rate of AKI, the development of drugs to effectively treat AKI is a huge unmet medical need and a research hotspot. Although existing evidence fully demonstrates that reactive oxygen and nitrogen species (RONS) burst at the AKI site is a major contributor to AKI progression, the heterogeneity, complexity, and unique physiological structure of the kidney make most antioxidant and anti-inflammatory small molecule drugs ineffective because of the lack of kidney targeting and side effects. Recently, nanodrugs with intrinsic kidney targeting through the control of size, shape, and surface properties have opened exciting prospects for the treatment of AKI. Many antioxidant nanodrugs have emerged to address the limitations of current AKI treatments. In this review, we systematically summarized for the first time about the emerging nanodrugs that exploit the pathological and physiological features of the kidney to overcome the limitations of traditional small-molecule drugs to achieve high AKI efficacy. First, we analyzed the pathological structural characteristics of AKI and the main pathological mechanism of AKI: hypoxia, harmful substance accumulation-induced RONS burst at the renal site despite the multifactorial initiation and heterogeneity of AKI. Subsequently, we introduced the strategies used to improve renal targeting and reviewed advances of nanodrugs for AKI: nano-RONS-sacrificial agents, antioxidant nanozymes, and nanocarriers for antioxidants and anti-inflammatory drugs. These nanodrugs have demonstrated excellent therapeutic effects, such as greatly reducing oxidative stress damage, restoring renal function, and low side effects. Finally, we discussed the challenges and future directions for translating nanodrugs into clinical AKI treatment. AKI is a common clinical acute syndrome with high morbidity and mortality but without effective clinical drug available. Hypoxia and accumulation of toxic substances are key pathological features of various heterogeneous AKI. Excessive RONS is the core of the pathological mechanism of AKI. The development of nanodrugs is expected to achieve successful treatment in AKI.
Collapse
|
11
|
Fang Z, Wei L, Lv Y, Wang T, Hamezah HS, Han R, Tong X. Phillyrin restores metabolic disorders in mice fed with high-fat diet through inhibition of interleukin-6-mediated basal lipolysis. Front Nutr 2022; 9:956218. [PMID: 36276810 PMCID: PMC9581271 DOI: 10.3389/fnut.2022.956218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The function of white adipose tissue as an energy reservoir is impaired in obesity, leading to lipid spillover and ectopic lipid deposition. Adipose tissue inflammation can reduce the efficacy of lipid storage in adipocytes by augmenting basal lipolysis through producing interleukin-6 (IL-6). Therefore, pharmacological compounds targeting adipose tissue inflammation or IL-6 signaling might have the potential to combat obesity. This study aims to investigate the impact of Phillyrin, which is frequently used for treating respiratory infections in clinics in China, on obesity-related metabolic dysfunctions. Firstly, a mouse model of diet-induced obesity is used to assess the pharmacological applications of Phillyrin on obesity in vivo. Secondly, ex vivo culture of adipose tissue explants is utilized to investigate actions of Phillyrin on IL-6-linked basal lipolysis. Thirdly, a mouse model of IL-6 injection into visceral adipose tissue is explored to confirm the anti-basal lipolytic effect of Phillyrin against IL-6 in vivo. The results show that Phillyrin treatment reduces circulating level of glycerol, decreases hepatic steatosis and improves insulin sensitivity in obese mice. Meanwhile, Phillyrin attenuates obesity-related inflammation and IL-6 production in adipose tissue in obese mice. Furthermore, Phillyrin treatment results in resistance to IL-6-induced basal lipolysis in adipose tissue through suppressing expression of adipose triglyceride lipase (ATGL) both in vivo and in vitro. Collectively, these findings suggest that Phillyrin can restrain lipid efflux from inflamed adipose tissue in obesity by inhibiting IL-6-initiated basal lipolysis and ATGL expression, and thus is a potential candidate in the treatment of obesity-associated complications.
Collapse
Affiliation(s)
- Zhizheng Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lu Wei
- School of Life Sciences, Hainan University, Haikou, China
| | - Yanping Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tongsheng Wang
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | | | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Rongchun Han,
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China,Xiaohui Tong,
| |
Collapse
|
12
|
Qinwufeng G, Jiacheng L, Xiaoling L, Tingru C, Yunyang W, Yanlong Y. Jiu-Wei-Yong-An Formula suppresses JAK1/STAT3 and MAPK signaling alleviates atopic dermatitis-like skin lesions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115428. [PMID: 35659915 DOI: 10.1016/j.jep.2022.115428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiu-Wei-Yong-An (JWYA) formula is a traditional Chinese medicine (TCM) prescription used to treat atopic dermatitis (AD) in the clinic. JWYA is considered to have anti-inflammatory and antipruritic properties. However, the mechanism of JWYA remains unclear. AIM OF THE STUDY This study aimed to investigate the effect of JWYA on an experimental mouse AD model. MATERIALS AND METHODS Mice were sensitized with 2,4-dinitrochlorobenzene (DNCB) and intragastrically administered with JWYA for 14 days. The therapeutic effect was assessed using a grade four dermatitis score, skin moisture, thickness measurements, and a mouse behavior tests. H&E and toluidine blue staining were used to observe epidermal inflammatory thickening and mast cells in mouse skin lesions. Serum IgE levels and skin TNF-α and IL-4 levels were determined using ELISAs. The TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ mRNA expression levels in skin lesions were detected using qPCR. Network pharmacology analysis based on serum active components was performed to elucidate the mechanism, and the results were verified by Western blotting. Finally, we tested the binding affinity between the active ingredients of JWYA and JAK1 via molecular docking. RESULTS JWYA improved the skin lesions of AD mice, relieved itching and reduced skin thickening. Additionally, JWYA decreased the serum IgE level and the levels of TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ in skin. Moreover, JWYA inhibited the activation of JAK1/STAT3 and MAPK (p38, ERK, and JNK) signaling. Molecular docking showed that kaempferol, luteolin, and forsythin have high affinity for JAK1. CONCLUSIONS JWYA alleviates AD-like skin lesions and inhibited inflammation and skin itch. The effect of JWYA is attributed to blocking the JAK1/STAT3 and MAPK signaling pathways. We suggest that JWYA may be an alternative therapy for the treatment of AD.
Collapse
Affiliation(s)
- Gu Qinwufeng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lin Jiacheng
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Lu Xiaoling
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, China
| | - Chen Tingru
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wu Yunyang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yang Yanlong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
13
|
Feng Q, Si Y, Zhu L, Wang F, Fang J, Pan C, Gao X, Liu W. Anti-inflammatory effects of a SERP 30 polysaccharide from the residue of Sarcandra glabra against lipopolysaccharide-induced acute respiratory distress syndrome in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115262. [PMID: 35398243 DOI: 10.1016/j.jep.2022.115262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarcandra glabra (Thunb.) Nakai, a valuable dietetic Chinese herb, is still widely used today. Multiple ingredients of S. glabra with a variety of activities such as anti-inflammatory, antiviral, and antitumor were studied. However, the Sarcandra glabra (Thunb.) Nakai polysaccharide hasn't been reported for its anti-inflammatory effect. AIM OF THE STUDY In this study, the anti-inflammatory activity of Sarcandra glabra (Thunb.) Nakai polysaccharide was assessed in LPS-induced ARDS mice. MATERIALS AND METHODS A polysaccharide coded as SERP 30 was obtained by water extraction, alcohol precipitation, and gel filtration. After the physicochemical properties determination and structural characterization, LPS induced-mice ARDS model was used to evaluate the anti-inflammatory and associated antioxidant activities of SERP 30. H&E staining was used to observe the seriousness of lung injury in mice. The ELISA method was used to measure the expression of inflammatory factors (TNF-α and IL-6) in the serum of the mice. The TBA method and the WST-1 method were used to evaluate the oxidative stress injury. Immunohistochemistry was used to distinguish the expression of metalloproteinase-9 (MMP-9), heparinase (HPA), syndecan-1, and decorin in ARDS-mice lung tissue. Western blotting was used to confirm the expression of related proteins in mouse lung tissue. RESULTS SERP 30 had a potential role in improving lung damage, reducing inflammation, and preventing oxidative stress. Moreover, SERP 30 significantly attenuated the damage to the endothelial glycocalyx and maintained the integrity of the glycocalyx. The western blotting result implied that the main anti-inflammatory mechanism is directed towards NF-κB and MAPK signaling pathways with inhibiting the activation of associated proteins. CONCLUSION This research provides a theoretical basis for treating ARDS by using a byproduct from food resource.
Collapse
Affiliation(s)
- Qi Feng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Si
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lingling Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing, 210042, PR China
| | - Junqiang Fang
- Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, 250000, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
14
|
Li B, Lin F, Xia Y, Ye Z, Yan X, Song B, Yuan T, Li L, Zhou X, Yu W, Cheng F. The Intersection of Acute Kidney Injury and Non-Coding RNAs: Inflammation. Front Physiol 2022; 13:923239. [PMID: 35755446 PMCID: PMC9218900 DOI: 10.3389/fphys.2022.923239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Acute renal injury (AKI) is a complex clinical syndrome, involving a series of pathophysiological processes, in which inflammation plays a key role. Identification and verification of gene signatures associated with inflammatory onset and progression are imperative for understanding the molecular mechanisms involved in AKI pathogenesis. Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory responses, are associated with the aberrant expression of inflammation-related genes in AKI. However, its regulatory role in gene expression involves precise transcriptional regulation mechanisms which have not been fully elucidated in the complex and volatile inflammatory response of AKI. In this study, we systematically review current research on the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in AKI. We aim to provide potential research directions and strategies for developing ncRNA-targeted gene therapies as an intervention for the inflammatory damage in AKI.
Collapse
Affiliation(s)
- Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Zhou C, Lu M, Cheng J, Rohani ER, Hamezah HS, Han R, Tong X. Review on the Pharmacological Properties of Phillyrin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123670. [PMID: 35744798 PMCID: PMC9231344 DOI: 10.3390/molecules27123670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Phillyrin is an effective lignan glycoside extracted from a traditional Chinese medicine Forsythia suspensa (Thunb.) Vahl (Oleaceae). It mainly exists in the roots, stems, leaves and fruits of the plant, with the highest content in the leaves. In terms of its medicinal application, there are a large number of experimental data proving its pharmacological effects in vitro and in animal models, such as anti-inflammatory, anti-obesity, anti-tumor, etc. Furthermore, pharmacokinetic experiments have also shown phillyrin's high effectiveness and low toxicity. Despite more than one thousand studies in the literature on phillyrin retrievable from Web of Science, PubMed, and CNKI, few reviews on its pharmacological activities have been presented conclusively. In this paper, we aimed to summarize the pharmacological and pharmacokinetic characteristics of phillyrin from the current literature, focusing on its anti-inflammatory, anti-aging, antiviral, antibacterial, hepatoprotective and anti-cancer effects, hoping to come up with new insights for its application as well as future studies.
Collapse
Affiliation(s)
- Chenyu Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (C.Z.); (M.L.); (J.C.); (R.H.)
| | - Mengya Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (C.Z.); (M.L.); (J.C.); (R.H.)
| | - Jialei Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (C.Z.); (M.L.); (J.C.); (R.H.)
| | - Emelda Rosseleena Rohani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (E.R.R.); (H.S.H.)
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (E.R.R.); (H.S.H.)
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (C.Z.); (M.L.); (J.C.); (R.H.)
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: ; Tel.: +86-551-6812-9171; Fax: +86-551-6812-9028
| |
Collapse
|
16
|
Tang K, Zhong B, Luo Q, Liu Q, Chen X, Cao D, Li X, Yang S. Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. Eur J Pharmacol 2022; 927:175022. [DOI: 10.1016/j.ejphar.2022.175022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
|
17
|
Qu Q, Li Y, Dong Q, Li S, Du H, Wang Z, Gong X, Zhang W, Lv W, Chao L, Liu M, Tang X, Guo S. Comparative Evaluation of Forsythiae Fructus From Different Harvest Seasons and Regions by HPLC/NIR Analysis and Anti-inflammatory and Antioxidant Assays. Front Pharmacol 2021; 12:737576. [PMID: 34899295 PMCID: PMC8652199 DOI: 10.3389/fphar.2021.737576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Forsythiae Fructus (FF), the dry fruit of Forsythia suspensa (Thunb.) Vahl, has a long history of use in traditional Chinese Medicine for its heat-clearing and detoxifying properties. It possesses clinical therapeutic effects and biological functions showing efficacy in handling different diseases. To investigate the FF differences in Henan, Shanxi, and Shaanxi in August and October, the surface morphology, mid-infrared and near-infrared spectrums, and HPLC were analyzed. Concurrently, the anti-inflammatory and antioxidant effects on LPS-induced J774A.1 cells were evaluated by western blot and RT-qPCR. The results showed that FF from different Harvest Seasons and Regions are provided with different microstructures and mid-infrared and near-infrared spectrums, and the levels of forsythiaside A and phillyrin of FF from Shanxi in August and phillygenin of FF from Shaanxi in August were the highest. Meanwhile, FF from Shanxi and Shaanxi in August markedly reduced the levels of inflammatory cytokines and mediators (TNF-α, IL-1β, NF-κB, and iNOS) and the protein expression levels of phosphorylated total IKKα/β and nuclear NF-κB. In August, SXFF and SAXFF also promoted the mRNA expression levels of HO-1 and NQO1 and the protein expression levels of HO-1 and nuclear Nrf2 and suppressed the protein expression levels of KEAP1. Spearman correlation analysis showed that phillygenin had a strong correlation with the protein expression on LPS-induced J774A.1 cells. In summary, our results showed that FF from harvest seasons and regions contributed to the distinct differences in microstructure, the mid-infrared and near-infrared spectrums, and compound content. More importantly, FF from Shanxi and Shaanxi in August showed marked anti-inflammatory and antioxidant activities, but with some differences, which may be because of different contents of phillygenin and phillyrin of lignans in FF.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuefei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shupeng Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaopei Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenchang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Limin Chao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinggang Tang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Jiang Q, Wei D, He X, Gan C, Long X, Zhang H. Phillyrin Prevents Neuroinflammation-Induced Blood-Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Front Pharmacol 2021; 12:719823. [PMID: 34744713 PMCID: PMC8565465 DOI: 10.3389/fphar.2021.719823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Phillyrin (Phi) is the main polyphenolic compound found in Forsythia suspensa. Recent studies have revealed that Phi has potent antioxidative and anti-inflammatory effects. However, whether Phi could relieve blood-brain barrier (BBB) damage following traumatic brain injury (TBI) remains unknown. Materials and Methods: Lipopolysaccharide (LPS) was used to activate primary microglia, which were then treated with different doses of Phi or the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist (GW9662). CCK-8 assay was used for evaluating cell viability, and the cytokines (including IL-1β, IL-6, TNFα, IL-4, IL-10, and TGFβ), microglial phenotypic markers (iNOS, COX2, and CD86 for "M1" polarization; Arg1, Ym1, and CD206 for "M2" polarization), PPARγ, and NF-κB were determined by RT-PCR, Western blot, or cellular immunofluorescence. Primary cultured mouse brain microvascular endothelial cells (BMECs) were stimulated by the condition medium (CM) from microglia. The cell viability, angiogenesis, and tight junction of BMECs were determined via CCK-8 assay, tube formation assay, and Western blot (for detecting MMP3, MMP9, ZO1, claudin-5, and occludin). Furthermore, the mouse TBI model was constructed and treated with Phi and/or GW9662. The BBB integrity was evaluated by H&E staining, Evans blue staining, and tissue immunofluorescence. Results: Phi markedly restrained the pro-inflammatory ("M1" state) cytokines and promoted anti-inflammatory ("M2" polarization) cytokines in LPS-mediated microglia. Phi mitigated "M1" polarization and promoted "M2" polarization of microglia via enhancing PPARγ and inhibiting the NF-κB pathway. The PPARγ antagonist GW9662 significantly repressed Phi-mediated anti-inflammatory effects. Meanwhile, Phi enhanced the viability, tube formation ability, and cell junction of BMECs. In the TBI mouse model, Phi promoted "M2" polarization, whereas it repressed the "M1" polarization of microglia. In addition, Phi reduced TBI-mediated BBB damage. However, the protective effects of Phi were reversed mainly by GW9662 treatment. Conclusion: Phi prevents BBB damage via inhibiting the neuroinflammation of microglia through the PPARγ/NF-κB pathway, which provides a potential therapeutic drug against TBI.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Wei
- Department of Neurosurgery, Tianyou Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Long
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Yin L, Zhao H, Zhang H, Li Y, Dong Y, Ju H, Kong F, Zhao S. Remdesivir Alleviates Acute Kidney Injury by Inhibiting the Activation of NLRP3 Inflammasome. Front Immunol 2021; 12:652446. [PMID: 34093539 PMCID: PMC8176923 DOI: 10.3389/fimmu.2021.652446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/29/2021] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent clinical complication in critically ill patients, and it rapidly develops into renal failure with high morbidity and mortality. However, other than dialysis, no effective therapeutic interventions can offer reliable treatment to limit renal injury and improve survival. Here, we firstly reported that remdesivir (RDV, GS-5734), a broad-spectrum antiviral nucleotide prodrug, alleviated AKI by specifically inhibiting NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in macrophages. Mechanically, RDV effectively suppressed the activities of nuclear transcription factor (NF)-κB, mitogen-activated protein kinase (MAPK), which further led to the reduction of the inflammasome genes of NLRP3 transcription, limiting the activation of NLRP3 inflammasome in vivo and in vitro. RDV also inhibited other pro-inflammatory genes including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-12, IL-1β, and interferon–β (IFN-β), leading to the reduction of inflammatory factors release. Thus, RDV can ameliorate AKI via modulating macrophage inflammasome activation and inflammatory immune responses and may have a therapeutic potential for patients with AKI in clinical application.
Collapse
Affiliation(s)
- Liang Yin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Haoxin Zhao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Huiyu Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yuhao Dong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huijin Ju
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Kong
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
21
|
Qi F, Zhou H, Gu P, Tang ZH, Zhu BF, Chen JR, Zhang JS, Li F. Endothelial glycocalyx degradation is associated with early organ impairment in polytrauma patients. BMC Emerg Med 2021; 21:52. [PMID: 33879092 PMCID: PMC8056622 DOI: 10.1186/s12873-021-00446-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) abnormal degradation were widely found in critical illness. However, data of EG degradation in multiple traumas is limited. We performed a study to assess the EG degradation and the correlation between the degradation and organ functions in polytrauma patients. METHODS A prospective observational study was conducted to enroll health participants (control group) and polytrauma patients (trauma group) at a University affiliated hospital between Feb 2020 and Oct 2020. Syndecan1 (SDC1) and heparin sulfate (HS) were detected in serum sample of both groups. In trauma group, injury severity scores (ISS) and sequential organ failure assessments (SOFA) were calculated. Occurrences of acute kidney injury (AKI), trauma-induced coagulopathy (TIC) within 48 h and 28-day all-cause mortality in trauma group were recorded. Serum SDC1 and HS levels were compared between two groups. Correlations between SDC1/HS and the indicators of organ systems in the trauma group were analyzed. ROC analyses were performed to assess the predictive value of SDC1 and HS for AKI, TIC within 48 h, and 28-day mortality in trauma group. RESULTS There were 45 polytrauma patients and 15 healthy participants were collected, totally. SDC1 and HS were significantly higher in trauma group than in control group (69.39 [54.18-130.80] vs. 24.15 [13.89-32.36], 38.92 [30.47-67.96] vs. 15.55 [11.89-23.24], P < 0.001, respectively). Trauma group was divided into high degradation group and low degradation group according to SDC1 median. High degradation group had more severe ISS, SOFA scores, worse organ functions (respiratory, kidney, coagulation and metabolic system), and higher incidence of hypothermia, acidosis and shock. The area under the receiver operator characteristic curves (AUC) of SDC1 to predict AKI, TIC occurrence within 48 h and 28-day mortality were 0.838 (95%CI: 0.720-0.957), 0.700 (95%CI: 0.514-0.885) and 0.764 (95%CI: 0.543-0.984), respectively. CONCLUSIONS EG degradation was elevated significantly in polytrauma patients, and the degradation was correlated with impaired respiratory, kidney, coagulation and metabolic systems in early stage. Serum SDC1 is a valuable predictive indicator of early onset of AKI, TIC, and 28-day mortality in polytrauma patients.
Collapse
Affiliation(s)
- Feng Qi
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Hao Zhou
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Peng Gu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Zhi-He Tang
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Bao-Feng Zhu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jian-Rong Chen
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jin-Song Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
22
|
Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth Analg 2020; 131:1693-1707. [PMID: 33186158 DOI: 10.1213/ane.0000000000005175] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an evolutionary hallmark of higher organisms that defends the host against invading pathogens and exogenous infections. This defense includes the recruitment of immune cells to the site of infection and the initiation of an inflammatory response to contain and eliminate pathogens. However, an inflammatory response may also be triggered by noninfectious stimuli such as major surgery, and, in case of an overshooting, still not comprehensively understood reaction, lead to tissue destruction and organ dysfunction. Unfortunately, in some cases, the immune system may not effectively distinguish between stimuli elicited by major surgery, which ideally should only require a modest inflammatory response, and those elicited by trauma or pathogenic infection. Surgical procedures thus represent a potential trigger for systemic inflammation that causes the secretion of proinflammatory cytokines, endothelial dysfunction, glycocalyx damage, activation of neutrophils, and ultimately tissue and multisystem organ destruction. In this review, we discuss and summarize currently available mechanistic knowledge on surgery-associated systemic inflammation, demarcation toward other inflammatory complications, and possible therapeutic options. These options depend on uncovering the underlying mechanisms and could include pharmacologic agents, remote ischemic preconditioning protocols, cytokine blockade or clearance, and optimization of surgical procedures, anesthetic regimens, and perioperative inflammatory diagnostic assessment. Currently, a large gap between basic science and clinically confirmed data exists due to a limited evidence base of translational studies. We thus summarize important steps toward the understanding of the precise time- and space-regulated processes in systemic perioperative inflammation.
Collapse
Affiliation(s)
- Andreas Margraf
- From the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | | | | |
Collapse
|
23
|
Du Y, You L, Ni B, Sai N, Wang W, Sun M, Xu R, Yao Y, Zhang Z, Qu C, Yin X, Ni J. Phillyrin Mitigates Apoptosis and Oxidative Stress in Hydrogen Peroxide-Treated RPE Cells through Activation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2684672. [PMID: 33101585 PMCID: PMC7576358 DOI: 10.1155/2020/2684672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023]
Abstract
Oxidative stress-induced dysfunction or apoptosis in retinal pigment epithelial (RPE) cells is an important cause of dry age-related macular degeneration (AMD). Although phillyrin has been shown to exert significant antioxidant effects, the underlying mechanism of action remains unclear. The purpose of this study was to investigate the protective effect of phillyrin on hydrogen peroxide- (H2O2-) induced oxidative stress damage in RPE cells and the potential mechanism involved. It was found that phillyrin significantly protected RPE cells from H2O2 cytotoxicity. Furthermore, phillyrin alleviated oxidative stress-induced apoptosis via inhibition of endogenous and exogenous apoptotic pathways. Compared with the H2O2-treated group, the expressions of cleaved caspase-3, cleaved caspase-9, cleaved polymerase (PARP), death receptor Fas, and cleaved caspase-8, as well as Bax/Bcl-2 ratio were decreased in RPE cells after the phillyrin intervention. In addition, phillyrin reversed the oxidative stress-induced reductions in superoxide dismutase (SOD) and glutathione (GSH) levels and annulled the elevations in reactive oxygen species (ROS) and malondialdehyde (MDA), thereby restoring oxidant-antioxidant homeostasis. Phillyrin treatment upregulated the expressions of cyclin E, cyclin-dependent kinase 2 (CDK2), and cyclin A and downregulated the expressions of p21 and p-p53, thereby reversing the G0/G1 cell cycle arrest in H2O2-treated RPE cells. Pretreatment with phillyrin also increased the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductases-1 (NQO-1) in RPE cells and inhibited the formation of Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 protein complex. Thus, phillyrin effectively protected RPE cells from oxidative stress through activation of the Nrf2 signaling pathway and inhibition of the mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Boran Ni
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100029, China
| | - Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
24
|
Wang L, Zhang W, Lu Z, Wang B, Li Y, Yang J, Li P, Zhao M. Functional Gene Module-Based Identification of Phillyrin as an Anticardiac Fibrosis Agent. Front Pharmacol 2020; 11:1077. [PMID: 32765276 PMCID: PMC7379486 DOI: 10.3389/fphar.2020.01077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022] Open
Abstract
Cardiac fibrosis (CF) greatly influences the therapeutic effects of heart diseases and remains an urgent challenge in clinical therapy. Till now, only a few methods are used to find potential anti-CF drugs effectively. This study aimed to construct a gene functional module to represent the core pathological process of CF and screen antifibrotic agents capable of decreasing the expression of the gene functional module. First, three CF marker genes Postn, Ddr2, and Pdgfra were selected to identify the corresponding highest coexpressed genes in the genome-based transcriptional profiles of human hearts. Both the marker genes and the coexpressed genes formed the CF-related gene functional module. Second, the correlation of the module with the CF process was measured in a collection of gene expression profiles of heart diseases to evaluate the participation of the functional module in heart diseases. Third, the anti-CF effects of phillyrin were predicted by the enrichment analysis of the module in the phillyrin-induced transcriptional profile. Finally, the myocardial infarction animal model was used to validate the cardioprotective and anti-CF effects of phillyrin experimentally. The results showed that phillyrin was a novel antifibrotic agent in heart diseases.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wuxia Zhang
- College of Arts and Sciences, ShanXi Agricultural University, Taigu, China
| | - Ziwen Lu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Li
- College of Arts and Sciences, ShanXi Agricultural University, Taigu, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|