1
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Zhou Y, He LN, Wang LN, Chen KY, Qian SD, Li XH, Zang J, Wang DM, Yu XF, Gao J. Human amniotic mesenchymal stromal cell-derived exosomes promote neuronal function by inhibiting excessive apoptosis in a hypoxia/ischemia-induced cerebral palsy model: A preclinical study. Biomed Pharmacother 2024; 173:116321. [PMID: 38394849 DOI: 10.1016/j.biopha.2024.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a condition resulting from perinatal brain injury and can lead to physical disabilities. Exosomes derived from human amniotic mesenchymal stromal cells (hAMSC-Exos) hold promise as potential therapeutic options. OBJECTIVE This study aimed to investigate the impact of hAMSC-Exos on neuronal cells and their role in regulating apoptosis both in vitro and in vivo. METHODS hAMSC-Exos were isolated via ultracentrifugation and characterized via transmission electron microscopy, particle size analysis, and flow cytometry. In vitro, neuronal damage was induced by lipopolysaccharide (LPS). CP rat models were established via left common carotid artery ligation. Apoptosis levels in cells and CP rats were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, and TUNEL analysis. RESULTS The results demonstrated successful isolation of hAMSC-Exos via ultracentrifugation, as the isolated cells were positive for CD9 (79.7%) and CD63 (80.2%). Treatment with hAMSC-Exos significantly mitigated the reduction in cell viability induced by LPS. Flow cytometry revealed that LPS-induced damage promoted apoptosis, but this effect was attenuated by treatment with hAMSC-Exos. Additionally, the expression of caspase-3 and caspase-9 and the Bcl-2/Bax ratio indicated that excessive apoptosis could be attenuated by treatment with hAMSC-Exos. Furthermore, tail vein injection of hAMSC-Exos improved the neurobehavioral function of CP rats. Histological analysis via HE and TUNEL staining showed that apoptosis-related damage was attenuated following hAMSC-Exo treatment. CONCLUSIONS In conclusion, hAMSC-Exos effectively promote neuronal cell survival by regulating apoptosis, indicating their potential as a promising therapeutic option for CP that merits further investigation.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Lu-Na He
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Li-Na Wang
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Kai-Yun Chen
- Drug Clinical Trials Office, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| | - Shi-Da Qian
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| | - Xu-Huan Li
- Department of General Medicine, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| | - Jing Zang
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Dong-Ming Wang
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Xue-Feng Yu
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China.
| | - Jing Gao
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China.
| |
Collapse
|
3
|
Chen Y, Chen S, Wu M, Chen F, Guan Q, Zhang S, Wen J, Sun Z, Chen Z. Hydrogen Sulfide Protects against Rat Ischemic Brain Injury by Promoting RhoA Phosphorylation at Serine 188. ACS OMEGA 2024; 9:13227-13238. [PMID: 38524410 PMCID: PMC10956087 DOI: 10.1021/acsomega.3c10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
The protective role of hydrogen sulfide against cerebral ischemia-reperfusion injury involves the inhibition of the RhoA-/Rho-associated coiled-coil kinase (ROCK) pathway. However, the specific mechanism remains elusive. This study investigates the impact of hydrogen sulfide on RhoA phosphorylation at serine 188 (Ser188) in vivo, aiming to test the hypothesis that hydrogen sulfide exerts neuroprotection by enhancing RhoA phosphorylation at Ser188, subsequently inhibiting the RhoA/ROCK pathway. Recombinant RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids were constructed and administered via stereotaxic injection into the rat hippocampus. A rat global cerebral ischemia-reperfusion model was induced by bilateral carotid artery ligation to elucidate the neuroprotective mechanisms of hydrogen sulfide. Both RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids expressed RhoAwild and RhoAS188A proteins, respectively, in rat hippocampal tissues, alongside the intrinsic RhoA protein. Systemic administration of the exogenous hydrogen sulfide donor sodium hydrosulfide led to an increase in Ser188 phosphorylation of transfected RhoAwild and intrinsic RhoA protein within the hippocampus. However, this effect was not observed in tissues transfected with RhoAS188A. Sodium hydrosulfide-mediated RhoA phosphorylation correlated with decreased RhoA and ROCK2 activity in rat hippocampal tissues. Furthermore, sodium hydrosulfide administration reduced cerebral ischemia-reperfusion-induced neuronal damage and apoptosis in rat hippocampal tissues transfected with RhoAwild. However, this neuroprotective effect was attenuated in rats transfected with RhoAS188A. These findings suggest that the neuroprotective mechanism of hydrogen sulfide against cerebral ischemia/reperfusion injury involves increased RhoA phosphorylation at Ser188. Promoting this phosphorylation may represent a potential intrinsic therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Ye Chen
- Department
of Pathology, The First Affiliated Hospital
of Anhui Medical University, Hefei 230000, Anhui, China
| | - Shuo Chen
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Miao Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Fang Chen
- Department
of Neurology, The First Affiliated
Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Qianjun Guan
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Sen Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Jiyue Wen
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Zhongwu Sun
- Department
of Neurology, The First Affiliated
Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhiwu Chen
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| |
Collapse
|
4
|
Wen B, Zhu H, Xu J, Xu L, Huang Y. NMDA Receptors Regulate Oxidative Damage in Keratinocytes during Complex Regional Pain Syndrome in HaCaT Cells and Male Rats. Antioxidants (Basel) 2024; 13:244. [PMID: 38397842 PMCID: PMC10886417 DOI: 10.3390/antiox13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Complex regional pain syndrome (CRPS), a type of primary chronic pain, occurs following trauma or systemic disease and typically affects the limbs. CRPS-induced pain responses result in vascular, cutaneous, and autonomic nerve alterations, seriously impacting the quality of life of affected individuals. We previously identified the involvement of keratinocyte N-methyl-d-asparagic acid (NMDA) receptor subunit 2 B (NR2B) in both peripheral and central sensitizations in CRPS, although the mechanisms whereby NR2B functions following activation remain unclear. Using an in vivo male rat model of chronic post-ischemia pain (CPIP) and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we discovered that oxidative injury occurs in rat keratinocytes and HaCaT cells, resulting in reduced cell viability, mitochondrial damage, oxidative damage of nucleotides, and increased apoptosis. In HaCaT cells, OGD/R induced increases in intracellular reactive oxygen species levels and disrupted the balance between oxidation and antioxidation by regulating a series of antioxidant genes. The activation of NMDA receptors via NMDA exacerbated these changes, whereas the inhibition of the NR2B subunit alleviated them. Co-administration of ifenprodil (an NR2B antagonist) and NMDA (an NMDA receptor agonist) during the reoxygenation stage did not result in any significant alterations. Furthermore, intraplantar injection of ifenprodil effectively reversed the altered gene expression that was observed in male CPIP rats, thereby revealing the potential mechanisms underlying the therapeutic effects of peripheral ifenprodil administration in CRPS. Collectively, our findings indicate that keratinocytes undergo oxidative injury in CRPS, with NMDA receptors playing regulatory roles.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| | - He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| |
Collapse
|
5
|
Hashem HR, Amin BH, Yosri M. Investigation of the potential roles of adipose stem cells and substances of natural origin in the healing process of E. coli infected wound model in Rats. Tissue Cell 2023; 85:102214. [PMID: 37690258 DOI: 10.1016/j.tice.2023.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Skin infections by pathogenic microorganisms are a serious problem due to the potential of dissemination through the bloodstream to various organs causing toxic effects that may be up to mortality. Escherichia coli (E. coli) is one of the most predominant Gram-negative bacterial species present globally with great attention for investigation. The current study is designed to investigate the possible role of adipose tissue-derived stem cells (ADSCs), as well as natural products such as Trichoderma viride (T. viride) extract, Saccharomyces boulardii (S. boulardii) solution in the enhancement of wound healing process in the infected skin with E. coli. Ninety-six female rats were divided into 8 groups (12 animal/group): normal skin, wounded skin, wounded skin infected with E. coli, infected-wounded skin treated by ADSCs, infected-wounded skin treated by T. viride extract, infected-wounded skin treated by S. boulardii solution, infected-wounded skin treated a combination of treatments, infected-wounded skin treated by gentamicin. At day 21 animal weights and bacterial count were detected and compared. Animals were sacrificed and skin from various groups was investigated using a light microscope for sections stained by (hematoxylin eosin, Masson trichrome, and PCNA) as well as transmission electron microscopy. Pro-inflammatory (IL-1β, TNF- α, and IL-13), anti-inflammatory cytokine (IL-4), and antioxidant enzymes (Superoxide dismutase, glutathione, and catalase) were assessed in various groups revealing that ADSCs lightly shift levels of these parameters in various rat groups to regular levels, while administration of T. viride extract, S. boulardii solution, their combination with ADSCs and gentamicin treatment drive the tested cytokines and enzymes to significant levels similar to a normal level where combination therapy gave the best result. The current findings revealed the possibility of using certain natural products as possible substitutes to regularly applied antibiotics with successive protective results in the wound infection model.
Collapse
Affiliation(s)
- Heba R Hashem
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt.
| |
Collapse
|
6
|
Lingli C, Hongmei N, Penghuan J, Hongli Z, Yuye L, Rui W, Fei R, Zhihong Y, Dongfang H, Yaming G. Inhibition of RhoA/ROCK signalling pathway activity improves neural damage and cognitive deficits in the fluorosis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115554. [PMID: 37806133 DOI: 10.1016/j.ecoenv.2023.115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Excessive fluoride intake poses health risks to humans and animals. Many studies have indicated that fluoride exposure can damage the cytoskeleton and synapses, which has negative effects on the intellectual development of humans and animals. Our previous study suggested that the RhoA/ROCK signalling pathway is activated by NaF exposure in HT-22 cells and plays a vital role in cytoskeletal assembly and synaptogenesis. However, the mechanism underlying RhoA/ROCK-mediated cytoskeletal injury induced by fluoride remains unclear. In this study, Neuro-2A cells and ICR mice were used to investigate the effects of RhoA/ROCK activation inhibition on NaF-induced synaptic dysfunction and cognitive impairment. We detected the expression of GAP, RhoA, ROCK1/2, and (p)-MLC in vivo and in vitro model. The results showed that NaF exposure activated the RhoA/ROCK/MLC signalling pathway. We measured the effects of RhoA/ROCK inhibition on synaptic injury and intellectual impairment induced by NaF exposure. In vitro, Y-27632 suppressed activated RhoA/ROCK, attenuated morphological and ultrastructural damage, and decreased the survival rate and synapse-functional protein expression caused by NaF. In vivo, the results showed that the RhoA/ROCK/MLC pathway was inhibited by fasudil and improved pathological damage in the hippocampus, cognitive impairment, and decreased expression of neurofunctional proteins induced by NaF. Overall, these results suggest that fasudil and Y-27632 can reverse neurotoxicity caused by fluoride exposure. Furthermore, inhibition of RhoA/ROCK may be a future treatment for CNS injury, and more detailed studies on other neurodegenerative disease models are required to confirm its effectiveness.
Collapse
Affiliation(s)
- Chen Lingli
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China; Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ning Hongmei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Jia Penghuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Zhang Hongli
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Liu Yuye
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Wang Rui
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ren Fei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Yin Zhihong
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Hu Dongfang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ge Yaming
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China.
| |
Collapse
|
7
|
Chang H, Hou J, Shao Y, Xu M, Weng X, Du Y, Shi J, Zhang L, Cui H. Sanggenon C inhibits cell proliferation and induces apoptosis by regulating the MIB1/DAPK1 axis in glioblastoma. MedComm (Beijing) 2023; 4:e281. [PMID: 37346933 PMCID: PMC10279945 DOI: 10.1002/mco2.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/23/2023] Open
Abstract
Sanggenon C (SC), a herbal flavonoid extracted from Cortex Mori, has been mentioned to possess more than one treasured organic properties. However, the molecular mechanism of its anti-tumor impact in glioblastoma (GBM) remains unclear. In this study, we reported that SC displayed a GBM-suppressing impact in vitro and in vivo with no apparent organ toxicity. SC dramatically suppressed cell proliferation-induced cell apoptosis in GBM cells. Mechanistically, we unveiled that SC modulated the protein expression of death associated protain kinase 1 (DAPK1) by controlling the ubiquitination and degradation of DAPK1. Quantitative proteomic and Western blot analyses showed that SC improved DAPK1 protein degradation via decreasing the expression of E3 ubiquitin ligase Mindbomb 1 (MIB1). More importantly, the effects of SC on cell proliferation and apoptosis of GBM cells have been in part reversed through DAPK1 downregulation or MIB1 overexpression, respectively. These results indicated that SC might suppress cell proliferation and induce cell apoptosis by decreasing MIB1-mediated DAPK1 degradation. Furthermore, we found that SC acted synergistically with temozolomide (TMZ), an anti-cancer drug used in GBM, resulting in elevated chemotherapeutic sensitivity of GBM to TMZ. Collectively, our data suggest that SC might be a promising anti-cancer agent for GBM therapy.
Collapse
Affiliation(s)
- Hongbo Chang
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Jianbing Hou
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Yaqian Shao
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Minghao Xu
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Xuelian Weng
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Yi Du
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Junbo Shi
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Li Zhang
- Department of Radiology and Nuclear MedicineThe First Hospital of HeBei Medical UniversityHebeiChina
| | - Hongjuan Cui
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
- Jinfeng LaboratoryChongqingChina
| |
Collapse
|
8
|
Zhou W, Yuan X, Li J, Wang W, Ye S. Retinol binding protein 4 promotes the phenotypic transformation of vascular smooth muscle cells under high glucose condition via modulating RhoA/ROCK1 pathway. Transl Res 2023:S1931-5244(23)00055-5. [PMID: 37003483 DOI: 10.1016/j.trsl.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Phenotypic switch of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of atherosclerosis (AS). High level of retinol binding protein 4 (RBP4) is regarded as a risk factor in cardiac-cerebral vascular disease. This study is performed to clarify the biological function of RBP4 in modulating the phenotypic switch of VSMCs induced via RhoA/ROCK1 signaling pathway. METHODS AND MATERIALS In vivo experiment, all the rats were dividedinto control group (NC), diabetic group (DM) and diabetic atherosclerosis group(DAS). The expressions of biochemical indicators, RhoA and Rho associated coiled-coil containing protein kinase 1 (ROCK1) were detected. In vitro experiment, VSMCs were cultured under high glucose condition, and ectogenic RBP4, HA-1100, rapamycin or 3-Methyladenine (3-MA) were supplemented to treat the VSMCs, respectively. The proliferation and migration of VSMCs were evaluated. The regulatory relationship between RBP4 and ROCK1was predicted by bioinformatics analysis, and validated by qRT-PCR and Western blot. The regulatory effects of RBP4 on contractile phenotypic markers such as calponin, MYH11, α-SMA and autophagy markers including LC3II, LC3I and Beclin-1 as well as mTOR were also detected. Moreover, VSMCs were cultured exposed to ROCK1 overexpressed plasmid or short hairpin RNA (shRNA), the proliferation and migration of VSMCs were evluated and the regulatory effects of RhoA/ROCK1 signaling pathway on contractile phenotypic markers and autophagy markers were also detected. RESULTS In vivo, RhoA, ROCK1 and mTOR were highly expressed in the rats intraperitoneally injected with RBP4. In vitro, the expressions of calponin, MYH11, α-SMA, LC3II, LC3I and Beclin-1 were decreased in VSMCs treated with ROCK1-OA under high glucose condition, conversely, the expressions were increased in VSMCs exposed to ROCK1-shRNA. Ectogenic RBP4 facilitated high glucose-induced proliferation and migration of VSMCs, and it repressed the expression of calponin, MYH11, α-SMA, LC3II/Iand Beclin-1 in VSMCs. As expected, ROCK1 inhibit or counteracted the biological effects of RBP4 on VSMCs. In addition, the expressions of contractile phenotypic markers, LC3II/I and Beclin-1 were promoted and mTOR were decreased after the VSMCs treated with autophagy agonist, whereas no significant difference was observed in the expressions of ROCK1, RhoA. CONCLUSION RBP4 is an injurious factor in the pathogenesis of diabetic AS, and it promotes the phenotypic switch of VSMCs via activating RhoA/ROCK1 pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xiaojing Yuan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jie Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Endocrinology, affiliated provincial hospital of Anhui Medical University, Anhui Medical University of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
9
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
10
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Anti-Inflammatory Effects of Flavonoids in Common Neurological Disorders Associated with Aging. Int J Mol Sci 2023; 24:ijms24054297. [PMID: 36901731 PMCID: PMC10001833 DOI: 10.3390/ijms24054297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Aging reduces homeostasis and contributes to increasing the risk of brain diseases and death. Some of the principal characteristics are chronic and low-grade inflammation, a general increase in the secretion of proinflammatory cytokines, and inflammatory markers. Aging-related diseases include focal ischemic stroke and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are the most common class of polyphenols and are abundantly found in plant-based foods and beverages. A small group of individual flavonoid molecules (e.g., quercetin, epigallocatechin-3-gallate, and myricetin) has been used to explore the anti-inflammatory effect in vitro studies and in animal models of focal ischemic stroke and AD and PD, and the results show that these molecules reduce the activated neuroglia and several proinflammatory cytokines, and also, inactivate inflammation and inflammasome-related transcription factors. However, the evidence from human studies has been limited. In this review article, we highlight the evidence that individual natural molecules can modulate neuroinflammation in diverse studies from in vitro to animal models to clinical studies of focal ischemic stroke and AD and PD, and we discuss future areas of research that can help researchers to develop new therapeutic agents.
Collapse
|
12
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
13
|
Chen XJ, Cui QX, Wang GL, Li XL, Zhou XL, Zhao HJ, Zhang MQ, Li MJ, He XJ, Zheng QS, Wang YL, Li D, Hong P. Sanggenon C Suppresses Tumorigenesis of Gastric Cancer by Blocking ERK-Drp1-Mediated Mitochondrial Fission. JOURNAL OF NATURAL PRODUCTS 2022; 85:2351-2362. [PMID: 36256535 DOI: 10.1021/acs.jnatprod.2c00524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sanggenon C is a flavonoid extracted from the root bark of white mulberry, which is a traditional Chinese medicine with anti-inflammatory, antioxidative, and antitumor pharmacological effects. In this study, sanggenon C was found to inhibit human gastric cancer (GC) cell proliferation and colony formation, induce GC cell cycle arrest in the G0-G1 phase, and promote GC cell apoptosis. Moreover, sanggenon C was found to decrease the level of mitochondrial membrane potential in GC cells and inhibit mitochondrial fission. Mechanistically, RNA sequencing, bioinformatics analysis, and a series of functional analyses confirmed that sanggenon C inhibited mitochondrial fission to induce apoptosis by blocking the extracellular regulated protein kinases (ERK) signaling pathway, and constitutive activation of ERK significantly abrogated these effects. Finally, sanggenon C was found to suppress the growth of tumor xenografts in nude mice without obvious side effects to the vital organs of animals. This study reveals that sanggenon C could be a novel therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Qi-Xiao Cui
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Guo-Li Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Li Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Lin Zhou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Hui-Jie Zhao
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Ming-Qian Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Min-Jing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Juan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qiu-Sheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Yu-Liang Wang
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Pan Hong
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| |
Collapse
|
14
|
Luo SY, Zhu JY, Zou MF, Yin S, Tang GH. Mulberry Diels-Alder-type adducts: isolation, structure, bioactivity, and synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:31. [PMID: 36050566 PMCID: PMC9436459 DOI: 10.1007/s13659-022-00355-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Mulberry Diels-Alder-type adducts (MDAAs) are unique phenolic natural products biosynthetically derived from the intermolecular [4 + 2]-cycloaddition of dienophiles (mainly chalcones) and dehydroprenylphenol dienes, which are exclusively distributed in moraceous plants. A total of 166 MDAAs with diverse skeletons have been isolated and identified since 1980. Structurally, the classic MDAAs characterized by the chalcone-skeleton dienophiles can be divided into eight groups (Types A - H), while others with non-chalcone dienophiles or some variations of classic MDAAs are non-classic MDAAs (Type I). These compounds have attracted significant attention of natural products and synthetic chemists due to their complex architectures, remarkable biological activities, and synthetic challenges. The present review provides a comprehensive summary of the structural properties, bioactivities, and syntheses of MDAAs. Cited references were collected between 1980 and 2021 from the SciFinder, Web of Science, and China National Knowledge Internet (CNKI).
Collapse
Affiliation(s)
- Si-Yuan Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jun-Yu Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ming-Feng Zou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
15
|
Chlorogenic Acid Prevents Microglia-Induced Neuronal Apoptosis and Oxidative Stress under Hypoxia-Ischemia Environment by Regulating the MIR497HG/miR-29b-3p/SIRT1 Axis. DISEASE MARKERS 2022; 2022:1194742. [PMID: 35664431 PMCID: PMC9159818 DOI: 10.1155/2022/1194742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022]
Abstract
Background Chlorogenic acid (CGA) is a polyphenolic compound with antioxidant and anti-inflammatory properties. CGA has been shown to improve neuroinflammation. This study is aimed at elucidating the exact mechanism by which CGA reduces neuroinflammation. Methods Oxygen and glucose deprivation (OGD) was utilized to treat BV2 microglia and HT-22 hippocampal neurons to engineer an in vitro model of hypoxic ischemia reperfusion. The levels of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and IL-10) and oxidative stress factors (MDA, SOD, and GSH-PX) in microglia were determined by ELISA kits. The neuron proliferation was assessed by CCK-8 assay, and LDH kit was used to determine LDH release in neurons. The fluorescent dye DCF-DA was employed to measure ROS levels in neurons. Correlation of MIR497HG, miR-29b-3p, and SIRT1/NF-κB in neurons and microglia was determined by qRT-PCR. Expressions of inflammatory proteins (COX2, iNOS), oxidative stress pathways (Nrf2, HO-1), and apoptosis-related proteins (Bcl-2, Bax, caspase3, caspase8, and caspase9) in microglia or neurons were determined by western blot. The interactions between MIR497HG and miR-29b-3p, as well as between miR-29b-3p and SIRT1, were determined by dual luciferase assay and RIP assay. Results CGA attenuated OGD-mediated inflammation and oxidative stress in microglia and inhibited microglia-mediated neuronal apoptosis. CGA increased the levels of MIR497HG and SIRT1 and suppressed the levels of miR-29b-3p in BV2 and HT-22 cells. MIR497HG knockdown, miR-29b-3p upregulation, and SIRT1 inhibition inhibited CGA-mediated anti-inflammatory and neuronal protective functions. There is a targeting correlation between MIR497HG, miR-29b-3p, and Sirt1. MIR497HG sponges miR-29b-3p to regulate SIRT1 expression in an indirect manner. Conclusion CGA upregulates MIR497HG to curb miR-29b-3p expression, hence initiating the SIRT1/NF-κB signaling pathway and repressing OGD-elicited inflammation, oxidative stress, and neuron apoptosis.
Collapse
|
16
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
17
|
Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114988. [PMID: 35032588 DOI: 10.1016/j.jep.2022.114988] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Xixin injection (DX), a preparation of extracts from traditional Chinese medicine Erigeron breviscapus (Vaniot) Hand.-Mazz., has been widely used in clinical treatment of cerebral ischemia sequelae in China for a long history. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The objective of this present study aimed to investigate the therapeutic effects of DX on cerebral ischemia/reperfusion (I/R) injury in a rat model. Meanwhile, its underlying molecular mechanisms on mitochondrial protection were further interpreted. MATERIALS AND METHODS The major components of DX were detected by high-performance liquid chromatography analysis. The model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO) in SD rats. We firstly performed neurobehavioral score, the regional cerebral blood flow (rCBF) assay, and TTC, HE and Nissl staining for evaluating the effects of DX on I/R injury. And then, the cortical levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were determined by commercial kits. Whereafter, real time-PCR and transmission electron microscopy were employed to investigate the relative copy number of mitochondrial DNA (mtDNA) and neuronal ultrastructure changes, respectively. Further, the potential interactions of major components in DX with mitophagy/apoptosis-related proteins were predicted by Schrodinger molecular docking. The expression of mitophagy-related proteins LC3, p62, TOM20, PINK1 and Parkin was estimated by western blot and immunofluorescence analyses. Furthermore, TUNEL staining and western blot were used to detect the apoptotic phenomenon and the protein expression of Bax, Bcl-2, Cytochrome c (Cyto-c) and cleaved Caspase-3. RESULTS DX mainly contains scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, caffeic acid and 5-O-caffeoylquinic acid. Compared with the model group, DX could remarkably relieve ischemia-provoked neurological deficit, rCBF deficiency and cerebral infarction. Pathological changes and neuronal loss in a MCAO model of rats were memorably ameliorated by DX administration. Meanwhile, DX reduced the surged ROS and MDA, while increased the level of SOD. Notably, DX treatment conversed the collapse of ATP and MMP, along with decreased in the relative copy number of mtDNA, contributing to the maintaining of mitochondrial ultrastructure via the increased number of autophagy lysosomes. The representative ingredients in DX had a potential bind with the active sites of mitophagy/apoptosis-related proteins. DX stimulated the protein expression of LC3, PINK1 and Parkin, while reduced the levels of p62 and TOM20. In addition, DX confined TUNEL-positive cell rate with the decreased expressions of Bax, Cyto-c and cleaved Caspase-3 as well as the increased Bcl-2 level. CONCLUSIONS We demonstrated that the protection of DX against brain ischemia could attribute to alleviating mitochondrial damage by upregulating mitophagy and inhibiting mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022; 10:biomedicines10040905. [PMID: 35453655 PMCID: PMC9028564 DOI: 10.3390/biomedicines10040905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023] Open
Abstract
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.
Collapse
|
19
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 253] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
20
|
Cao X, Ma J, Li S. Mechanism of lncRNA SNHG16 in oxidative stress and inflammation in oxygen-glucose deprivation and reoxygenation-induced SK-N-SH cells. Bioengineered 2022; 13:5021-5034. [PMID: 35170375 PMCID: PMC8974115 DOI: 10.1080/21655979.2022.2026861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cerebral ischemia-reperfusion injury imposes a clinical challenge for physicians in the wake of ischemic stroke. Meanwhile, recent evidence has come to light eliciting the neuroprotective function of SNHG16 in cerebrovascular diseases. Accordingly, the current study sought to analyze the regulatory mechanism of long non-coding RNA small nucleolar RNA host gene16 (SNHG16) in oxidative stress (OS) injury and cell inflammation. Firstly, models of oxygen-glucose deprivation and reoxygenation (OGD/R) were established in SK-N-SH cells. Cell proliferation and apoptosis were appraised using cell counting kit-8 and flow cytometry. Additionally, SNHG16, X-linked inhibitor of apoptosis protein (XIAP), microRNA (miR-421), reactive oxygen species (ROS), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor -α, interleukin (IL)-1β, and IL-10 expression patterns were determined. In addition, we determined and validated the subcellular localization of SNHG16 and the binding relationships between SNHG16 and miR-421, and miR-421 and XIAP. It was found that SNHG16 was poorly-expressed in OGD/R-treated cells. On the other hand, SNHG16 over-expression enhanced cell proliferation, inhibited apoptosis, and alleviated OS and cell inflammation. Furthermore, SNHG16 bound to miR-421 to facilitate the expression of XIAP. Up-regulation of miR-421 or down-regulation of XIAP could reverse the suppressive effects of SNHG16 on OS and cell inflammation. Collectively, our findings indicated that SNHG16 bound to miR-421 to facilitate XIAP expression, thus alleviating OS injury and inflammation in OGD/R-induced SK-N-SH cells.
Collapse
Affiliation(s)
- Xiangyuan Cao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| | - Jingjing Ma
- School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shaohua Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| |
Collapse
|
21
|
Li Z, Cao X, Xiao L, Zhou R. Aloperine protects against cerebral ischemia/reperfusion injury via activating the PI3K/AKT signaling pathway in rats. Exp Ther Med 2021; 22:1045. [PMID: 34434259 PMCID: PMC8353632 DOI: 10.3892/etm.2021.10478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebral ischemia is among the leading causes of death and long-term disability worldwide. The aim of the present study was to investigate the effects of aloperine (ALO) on cerebral ischemia/reperfusion (I/R) injury in rats and elucidate the possible underlying mechanisms. Therefore, a rat model of reversible middle cerebral artery occlusion (MCAO) was established to induce cerebral I/R injury. Following pretreatment with different doses of ALO, the histopathological changes in the brain tissue were evaluated by hematoxylin and eosin staining. The degree of cerebral infarction was determined using by 2,3,5-triphenyltetrazolium chloride staining. Additionally, the levels of oxidative stress- and inflammation-related factors were measured using commercially available kits. Cell apoptosis was assessed by TUNEL staining, while the expression levels of apoptosis- and PI3K/AKT signaling pathway-related proteins were determined by western blot analysis. The results demonstrated that ALO alleviated histopathological injury in the brain tissue and the area of cerebral infarction in a dose-dependent manner. Furthermore, significantly reduced levels of reactive oxygen species and malondialdehyde were observed in the ALO-treated rats post-MCAO/reperfusion, accompanied by increased levels of superoxide dismutase, catalase and glutathione. Consistently, treatment with ALO notably decreased the concentration of inflammatory factors, including TNF-α, IL-1β and IL-6, in a dose-dependent manner. In addition, ALO attenuated neuronal cell apoptosis, downregulated the expression of Bax and upregulated that of Bcl-2. I/R markedly reduced the expression levels of phosphorylated (p-)PI3K and p-AKT, which were dose-dependently restored by ALO intervention. Collectively, the aforementioned findings indicated that ALO could improve cerebral I/R injury and alleviate oxidative stress, inflammation and cell apoptosis via activating the PI3K/AKT signaling pathway, thus supporting the therapeutic potential of ALO against cerebral I/R injury in ischemic stroke.
Collapse
Affiliation(s)
- Zhimin Li
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xing Cao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Ligen Xiao
- Department of Cardiothoracic Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Ruijiao Zhou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
22
|
Cai R, Wang Y, Huang Z, Zou Q, Pu Y, Yu C, Cai Z. Role of RhoA/ROCK signaling in Alzheimer's disease. Behav Brain Res 2021; 414:113481. [PMID: 34302876 DOI: 10.1016/j.bbr.2021.113481] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases β-secretase activity and promotes amyloid-beta (Aβ) production; moreover, Aβ further activates ROCK. This is suggestive of a possible positive feedback role for Aβ and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction. Additionally, ROCK activation can promote the neuroinflammatory response by activating microglia and astrocytes to release inflammatory cytokines. Therefore, ROCK is a promising drug target in AD; further, there is a need to elucidate the specific mechanism of action.
Collapse
Affiliation(s)
- RuoLan Cai
- Zunyi Medical University, Zunyi, 563003, China; Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - YangYang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - ZhenTing Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - YinShuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.
| |
Collapse
|
23
|
Liu L, Zheng B, Wang Z. Protective effects of the knockdown of lncRNA AK139328 against oxygen glucose deprivation/reoxygenation-induced injury in PC12 cells. Mol Med Rep 2021; 24:621. [PMID: 34212979 PMCID: PMC8261620 DOI: 10.3892/mmr.2021.12260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cerebral ischemic stroke is a major cause of adult morbidity and mortality worldwide. Several long non-coding RNAs (lncRNAs) have been reported to participate in cerebral ischemia/reperfusion injury (IRI). However, to the best of our knowledge, the role of lncRNA AK139328 in cerebral ischemic stroke remains poorly understood. The present study aimed to determine the expression and function of lncRNA AK139328 in the progression of IRI. PC12 cells were injured by oxygen glucose deprivation/reoxygenation (OGD/R) to establish an in vitro ischemic stroke model. An MTT assay was performed to determine cell viability. Reverse transcription-quantitative PCR was used to analyze the expression levels of AK139328 and Netrin-1 in blood samples from patients who had suffered a cerebral ischemic stroke and healthy individuals or OGD/R PC12 cells. ELISAs were used to determine the levels of inflammatory cytokines. In addition, oxidative stress levels and the levels of cell apoptosis were evaluated by reactive oxygen species (ROS) kits, flow cytometry and western blotting. Immunofluorescence staining was used for the detection of cell neurite outgrowth. The results of the present study revealed that AK139328 expression levels were upregulated in patients who had suffered a cerebral ischemic stroke and in PC12 cells following stimulation with OGD/R. The knockdown of AK139328 alleviated OGD/R-induced decreases in cell viability, downregulation in Netrin-1 expression and increases in inflammatory cytokines levels, including TNF-α, IL-1β and IL-6. Moreover, AK139328 silencing suppressed oxidative stress and cell apoptosis in OGD/R-treated PC12 cells. Furthermore, the expression levels of microtubule associated protein 2 and growth associated protein 43 in OGD/R-injured PC12 cells were upregulated following the knockdown of AK139328 expression. In conclusion, these findings suggested that the knockdown of AK139328 expression may protect PC12 cells against OGD/R injury by regulating inflammatory responses, oxidative stress and cell apoptosis. The data suggested a potential therapeutic target for the diagnosis and treatment of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Liyan Liu
- Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Bin Zheng
- Department of Nephrology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Zhaoxia Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| |
Collapse
|
24
|
Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5471347. [PMID: 34257802 PMCID: PMC8253632 DOI: 10.1155/2021/5471347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species generation and oxidative stress after ischemic stroke.
Collapse
|
25
|
Wei L, Peng Y, Yang XJ, Zhou P. Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway. Kaohsiung J Med Sci 2021; 37:468-478. [PMID: 33560543 DOI: 10.1002/kjm2.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/29/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury can induce the mitophagy of neurons in the ischemic brain. Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of various injuries, especially in cerebral I/R injury. The purpose of this study is to investigate the molecular mechanism of lncRNA RNA component of mitochondrial RNA processing endoribonuclease (RMRP) in cerebral I/R injury. The middle cerebral artery occlusion (MCAO) mouse model was established. Neurological deficit score, pathological structure, infarcted area, neuron number, cell apoptosis, and coagulation ability of MCAO mice were evaluated. The expressions of RMRP, microRNA (miR)-613, and ATG3 in MCAO mice were detected. The binding relationships among miR-613, RMRP, and ATG3 were predicted and verified. Neuro 2A (N2a) cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury. Cell viability and apoptosis assays were performed. The effects of miR-613, ATG3, and RMRP on I/R injury were verified by functional rescue experiments. JAK2/STAT3 phosphorylation level was detected. We found significantly upregulated RMRP and ATG3, and downregulated miR-613 expressions in MCAO mice. RMRP could escalate ATG3 mRNA expression through miR-613. RMRP knockdown promoted viability and inhibited apoptosis of OGD/R-treated N2a cells, which could be reversed by miR-613 inhibition or ATG3 overexpression. RMRP overexpression inhibited the activation of JAK2/STAT3 signaling pathway. We demonstrated that lncRNA RMRP competitively bound to miR-613, leading to the increase of ATG3 expression and the inhibition the JAK2/STAT3 pathway, thus promoting cerebral I/R injury in mice.
Collapse
Affiliation(s)
- Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiao-Jun Yang
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
26
|
Menet R, Lecordier S, ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front Physiol 2020; 11:565667. [PMID: 33071819 PMCID: PMC7530281 DOI: 10.3389/fphys.2020.565667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|