1
|
Awasthi A, Maparu K, Singh S. Ferroptosis role in complexity of cell death: unrevealing mechanisms in Parkinson's disease and therapeutic approaches. Inflammopharmacology 2025:10.1007/s10787-025-01672-7. [PMID: 39998712 DOI: 10.1007/s10787-025-01672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, is characterized by progressive loss of dopaminergic neurons, and accumulation of α-synuclein in the substantial nigra. Emerging evidence identifies ferroptosis as a regulated iron-dependent cell death mechanism marked by excessive lipid peroxidation (LPO) as a key contributor to PD pathogenesis. Ferroptosis is intertwined with critical disease processes such as aggregation of α-synuclein protein, oxidative stress generation, mitochondrial alteration, iron homeostasis dysregulation, and neuroinflammation. This mechanism disrupts cellular homeostasis by impairing iron metabolism and antioxidant pathways like the xc-/glutathione/GPX4 axis and the CoQ10 pathway. This review consolidates current advancements in understanding ferroptosis in these mechanisms, increasing interest in contribution to PD pathology. In addition, it explores the latest developments in ferroptosis-targeting pharmacological agents, including their application in the preclinical and clinical study, and highlights their potential to revolutionize PD management. Unraveling the interplay between ferroptosis and PD offers a transformative perspective, paving the way for innovative therapies to combat this debilitating disease condition.
Collapse
Affiliation(s)
- Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
- Ai Gao
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaqi Lv
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Protective Effect of CP690550 in MPTP-Induced Parkinson's Like Behavioural, Biochemical and Histological Alterations in Mice. Neurotox Res 2022; 40:564-572. [PMID: 35366203 DOI: 10.1007/s12640-022-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Janus-activated kinases (JAKs) are well known to play a physiological as well as pathological role in several disease conditions such as autoimmune disorders. The present study evaluated the therapeutic potential of CP690550 (pan-JAK inhibitor) in 1-methyl-4-phenyl-1,2,3,6-tertahydropyridine (MPTP) model of Parkinson's disease. Intrastriatal administration of MPTP (30 micromol in 2 microl) produced a significant alteration in behavioural (bar test and block test). Biochemical investigations in serum and brain homogenate revealed a significant alteration in the JAK-mediated cytokine levels. MPTP administration also showed significant imbalance of inflammatory (increased TNF-α, IL-6 and NF-κb) versus anti-inflammatory cytokines (decreased IL-10 levels). MPTP-treated brain sections revealed alteration in the tissue architecture as well as undifferentiated bodies of varying contour and lesions. Chronic administration of CP690550 (3 and 10 mg/kg, po) for 7 days significantly reversed the behavioural, biochemical and histological alterations induced by MPTP. In conclusion, the findings of the present study govern the possible therapeutic potential of CP690550 in MPTP-treated mice and thus highlight the therapeutic potential of JAK inhibitors in treatment of Parkinson's disease.
Collapse
|
4
|
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, Dehpour AR, Abdolghaffari AH. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostaglandins Other Lipid Mediat 2021; 157:106587. [PMID: 34517113 DOI: 10.1016/j.prostaglandins.2021.106587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Yan M, Zhang S, Li C, Liu Y, Zhao J, Wang Y, Yang Y, Zhang L. 5-Lipoxygenase as an emerging target against age-related brain disorders. Ageing Res Rev 2021; 69:101359. [PMID: 33984528 DOI: 10.1016/j.arr.2021.101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology. In this review, we provide an update on the current understanding of 5-LOX activation and several groups of functionally related inhibitors. In addition, the modulatory roles of 5-LOX in the pathogenesis and progression of the age-related brain disorders have been comprehensively highlighted and discussed. Inhibition of 5-LOX activation may represent a promising therapeutic strategy for AD, PD and cerebral ischemia.
Collapse
|
6
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Rekha KR, Selvakumar GP. Gene expression regulation of Bcl2, Bax and cytochrome-C by geraniol on chronic MPTP/probenecid induced C57BL/6 mice model of Parkinson’s disease. Chem Biol Interact 2014; 217:57-66. [DOI: 10.1016/j.cbi.2014.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022]
|
8
|
Escin, a Novel Triterpene, Mitigates Chronic MPTP/p-Induced Dopaminergic Toxicity by Attenuating Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis. J Mol Neurosci 2014; 55:184-197. [DOI: 10.1007/s12031-014-0303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
|
9
|
Chou VP, Holman TR, Manning-Bog AB. Differential contribution of lipoxygenase isozymes to nigrostriatal vulnerability. Neuroscience 2012; 228:73-82. [PMID: 23079635 DOI: 10.1016/j.neuroscience.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 02/05/2023]
Abstract
The 5- and 12/15-lipoxygenase (LOX) isozymes have been implicated to contribute to disease development in CNS disorders such as Alzheimer's disease. These LOX isozymes are distinct in function, with differential effects on neuroinflammation, and the impact of the distinct isozymes in the pathogenesis of Parkinson's disease has not as yet been evaluated. To determine whether the isozymes contribute differently to nigrostriatal vulnerability, the effects of 5- and 12/15-LOX deficiency on dopaminergic tone under naïve and toxicant-challenged conditions were tested. In naïve mice deficient in 5-LOX expression, a modest but significant reduction (18.0% reduction vs. wildtype (WT)) in striatal dopamine (DA) was detected (n=6-8 per genotype). A concomitant decline in striatal tyrosine hydroxylase (TH) enzyme was also revealed in null 5-LOX vs. WT mice (26.2%); however, no changes in levels of DA or TH immunoreactivity were observed in null 12/15-LOX vs. WT mice. When challenged with the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), WT mice showed a marked reduction in DA (31.9%) and robust astrocytic and microglial activation as compared to saline-treated animals. In contrast, null 5-LOX littermates demonstrated no significant striatal DA depletion or astrogliosis (as noted by Western blot analyses for glial acidic fibrillary protein (GFAP) immunoreactivity). In naïve null 12/15-LOX mice, no significant change in striatal DA values was observed compared to WT, and following MPTP treatment, the transgenics revealed striatal DA reduction similar to the challenged WT mice. Taken together, these data provide the first evidence that: (i) LOX isozymes are involved in the maintenance of normal dopaminergic function in the striatum and (ii) the 5- and 12/15-LOX isozymes contribute differentially to striatal vulnerability in response to neurotoxicant challenge.
Collapse
Affiliation(s)
- V P Chou
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
10
|
Gupta A, Kumar A, Kulkarni SK. Targeting oxidative stress, mitochondrial dysfunction and neuroinflammatory signaling by selective cyclooxygenase (COX)-2 inhibitors mitigates MPTP-induced neurotoxicity in mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:974-81. [PMID: 21291942 DOI: 10.1016/j.pnpbp.2011.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 11/29/2022]
Abstract
Several studies have pointed towards the role of oxidative stress, mitochondrial dysfunction and neuroinflammation in Parkinson's disease (PD). The present study was focused on the possible neuroprotective effect of selective cyclooxygenase (COX)-2-inhibitors: valdecoxib and NS-398 in 1-methyl-4-phenyl-1,2,3,6-tertahydropyridine (MPTP)-induced neurotoxicity in mice. MPTP administration in dose of 40 mg/kg, i.p (four injections of 10mg/kg, i.p. at an interval of 1h each) significantly induced the Parkinson-like symptoms in mice as indicated by change in locomotor activity, inability to correct posture (bar test), and oxidative stress (increased levels of lipid peroxidation, nitrite concentration, and depletion of antioxidant enzyme). MPTP administration significantly impaired mitochondrial complex-I activity and redox activity, upregulated the caspase-3 and NF-κB levels as compared to vehicle group. Treatment with valdecoxib (5 or 10 mg/kg, p.o.) or NS-398 (5 or 10mg/kg, p.o.) for 7 days significantly reversed behavioral, biochemical, mitochondrial complex alterations as well as attenuated the induction of proinflammatory mediators in MPTP-treated groups. The findings of the present study substantiate the neuroprotective role of selective COX-2 inhibitors in ameliorating MPTP-induced neurodegeneration in mice and suggest the possible therapeutic potential of these drugs in the management of PD.
Collapse
|