1
|
Wang Y, Yan F, Xu DQ, Liu M, Liu ZF, Tang YP. Traditional uses, botany, phytochemistry, pharmacology and applications of Labisia pumila: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118522. [PMID: 38971345 DOI: 10.1016/j.jep.2024.118522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Labisia pumila (Blume) Fern.-Vill, also known as Kacip Fatimah, is a traditional medicinal herb common throughout Southeast Asia. It is primarily used to facilitate childbirth and postpartum recovery in women. Additionally, it can also be used to treat dysentery, rheumatism, gonorrhea, and as an anti-flatulent. AIM OF THIS REVIEW This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application. MATERIALS AND METHODS The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science). RESULTS This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, anti-inflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement. CONCLUSIONS LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China.
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Ming Liu
- White Heron Pharmaceutical Sdn Bhd, Wisma WH, Jalan KIP 9A, Taman Perindustrian KIP, 52200, Kuala Lumpur, Malaysia
| | - Ze-Feng Liu
- White Heron Pharmaceutical Sdn Bhd, Wisma WH, Jalan KIP 9A, Taman Perindustrian KIP, 52200, Kuala Lumpur, Malaysia
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China.
| |
Collapse
|
2
|
Nahar N, Mohamed S, Mustapha NM, Fong LS. Protective effects of Labisia pumila against neuropathy in a diabetic rat model. J Diabetes Metab Disord 2022; 21:1-11. [PMID: 35673507 PMCID: PMC9167350 DOI: 10.1007/s40200-021-00905-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Purpose Diabetes accelerates peripheral, distal symmetric polyneuropathy, small fiber predominant neuropathy, radiculoplexopathy, and autonomic neuropathy. This study investigated the neuroprotective effects of gallic acid and myricetin-rich Labisia pumila extract in a diabetic neuropathy rat model and evaluated the neuropathy correlationship with serum inflammatory biomarkers. Methods Thirty male rats were divided into 5 groups (n = 6), namely: healthy control; non-treated diabetic control; and diabetic-rats treated with 200 mg/kg metformin; Labisia pumila ethanol extract (LP) at 150 mg/kg or 300 mg/kg doses. Diabetes was induced by 60 mg streptozotocin /kg intraperitoneal injection. Rats were orally treated daily for ten weeks. Their fasting blood glucose (FBG), neurological functions (hot plate and tail immersion; thermal hyperalgesia; cold allodynia; motor walking function), biomarkers for inflammation and oxidative stress, the neuro-histopathological changes, and brain somatic index were measured. Results The extract significantly prevented abnormal increases in FBG and decreases in body weight gain. It attenuated behavioral dysfunctions (hot plate and tail immersion; thermal hyperalgesia; cold allodynia; motor walking function), systemic inflammation (serum TNF-α, prostaglandin-E2) oxidative tension (malondialdehyde), histological brain and sciatic nerve injuries in the diabetic-rats, better than Metformin. Conclusion LP mitigated neural dysfunction better than metformin partly by amending diabetic systemic inflammation, oxidative tension, and diabetic abnormalities. The nerve injuries were strongly correlated to serum prostaglandin-E2, TNF-α levels, and walking functions. The motor function was correlated to sensory neuronal functions, inflammation, and oxidation. The sensory neuronal functions were more affected by TNF-α than prostaglandin-E2 or oxidation. Diabetic brain and sciatic nerve deteriorations were influenced by serum TNF-α, PGE2, and MDA levels. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00905-0.
Collapse
Affiliation(s)
- Nazmun Nahar
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Suhaila Mohamed
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | | | - Lau Seng Fong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Malaysia
| |
Collapse
|
3
|
Zhang Q, Bai X, Wang R, Zhao H, Wang L, Liu J, Li M, Chen Z, Wang Z, Li L, Wang D. 4‐octyl Itaconate inhibits lipopolysaccharide (LPS)‐induced osteoarthritis via activating Nrf2 signalling pathway. J Cell Mol Med 2022; 26:1515-1529. [PMID: 35068055 PMCID: PMC8899168 DOI: 10.1111/jcmm.17185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
Small molecule drug intervention for chondrocytes is a valuable method for the treatment of osteoarthritis (OA). The 4‐octyl itaconate (OI) is a cellular derivative of itaconate with sound cell permeability and transformation rate. We attempted to confirm the protective role of OI in chondrocytes and its regulatory mechanism. We used lipopolysaccharide (LPS) to induce chondrocyte inflammation injury. After the OI treatment, the secretion and mRNA expression of Il‐6, Il‐10, Mcp‐1 and Tnf‐α were detected by ELISA and qPCR. The protective effect of OI on articular cartilage was further verified in surgical destabilization of the medial meniscus model of OA. Cell death and apoptosis were evaluated based on CCK8, LDH, Typan blue staining, Annexin V and TUNEL analyses. The small interfering RNAs were used to knockout the Nrf2 gene of chondrocytes to verify the OI‐mediated Nrf2 signalling pathway. The results revealed that OI protects cells from LPS‐induced inflammatory injury and attenuates cell death and apoptosis induced by LPS. Similar protective effects were also observed on articular cartilage in mice. The OI activated Nrf2 signalling pathway and promoted the stable expression and translocation of Nrf2 into the nucleus. When the Nrf2 signalling pathway was blocked, the protective effect of OI was significantly counteracted in chondrocytes and a mouse arthritis model. Both itaconate and its derivative (i.e., OI) showed important medical effects in the treatment of OA.
Collapse
Affiliation(s)
- Qingchen Zhang
- Department of Orthopaedics Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan China
- Department of Orthopaedics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Xiaohui Bai
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Rongrong Wang
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Hao Zhao
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Lili Wang
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Jingwen Liu
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Ming Li
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zheng Chen
- Department of Orthopaedics Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan China
- Department of Orthopaedics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Zejun Wang
- Department of Clinical Laboratory Shandong Provincial Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Lianxin Li
- Department of Orthopaedics Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan China
- Department of Orthopaedics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Dawei Wang
- Department of Orthopaedics Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan China
- Department of Orthopaedics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
4
|
Nahar N, Mohamed S, Mustapha NM, Fong LS, Mohd Ishak NI. Gallic acid and myricetin-rich Labisia pumila extract mitigated multiple diabetic eye disorders in rats. J Food Biochem 2021; 45:e13948. [PMID: 34622461 DOI: 10.1111/jfbc.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes affected about a quarter of a billion people globally, and one out of four diabetics has eye or vision problems. This study investigated whether gallic acid and myricetin-rich Labisia pumila extract (LP) consumption would help prevent diabetic eye disorders and some probable biochemistry involved relating to inflammation, vascular leakage, and oxidative tension. Male rats were divided into four groups (n = 6), namely healthy control, diabetic non-treated control, and hyperglycemic rats treated with 150 or 300 mg/kg LP. Intraperitoneal injection of 60 mg/kg streptozotocin was used to induce diabetes. Rats were fed in the morning and evening. Diabetic retinopathy was graded in rats using a dilated retinal digital ophthalmoscopy. Rats were sacrificed at 12 weeks and the retina, optic nerve, cornea, lens, sclera, ciliary bodies, iris, and conjunctiva were examined histologically. The diabetic rats consuming LP for 10 weeks showed dose-dependent, histopathologically-reduced eye abnormalities (keratopathy, cataract, sclera, conjunctiva, ciliary bodies, iris, limbus, corneal edema, epithelial barrier inefficiency, shallow punctate keratitis, lower basal layer cell density, retinopathy, glaucoma, and corneal changes). The LP significantly suppressed inflammation [increased serum tumor necrosis factor-α (TNF-α), prostaglandin-E2 (PGE2)], vascular leakage [claudin-1], abnormal vascularization [vascular endothelial growth factor (VEGF)], oxidative tension [malondialdehyde/reduced glutathione ratio], and hyperglycemia [fasting blood glucose] of the diabetic rats. The LP consumption was significantly protective against diabetic eye disorders and optic nerve dysfunction which were related to inflammation, vascular leakage, abnormal vascularization, and oxidative tension, which most likely influenced eye hemorrhage and collagen cross-linkage. PRACTICAL APPLICATIONS: The study shows that gallic acid and myricetin-rich Labisia pumila (LP) leaf consumption may be used as a complementary therapy for managing diabetes (fasting blood glucose) and preventing diabetic eye disorders (keratopathy, cataract, sclera, conjunctiva, ciliary bodies, iris, limbus, corneal edema, epithelial barrier inefficiency, shallow punctate keratitis, lower basal layer cell density, retinopathy, glaucoma, and corneal abnormalities). The LP consumptions reduced the serum biomarkers for inflammation (serum tumor necrosis factor-α TNF-α; prostaglandin-E2), vascular leakage/abnormalities (claudin-1 and vascular endothelial growth factor VEGF), and oxidative tension (malondialdehyde/reduced glutathione MDA/GSH ratio). The LP was eye-protective probably by normalizing fasting blood glucose, reducing inflammation, oxidative tension, vascular leakage, and irregular vascularization.
Collapse
Affiliation(s)
- Nazmun Nahar
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Serdang, Malaysia
| | - Suhaila Mohamed
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Serdang, Malaysia
| | | | - Lau Seng Fong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Serdang, Malaysia
| | | |
Collapse
|
5
|
Liu Z, Wang H, Wang S, Gao J, Niu L. PARP-1 inhibition attenuates the inflammatory response in the cartilage of a rat model of osteoarthritis. Bone Joint Res 2021; 10:401-410. [PMID: 34254815 PMCID: PMC8333032 DOI: 10.1302/2046-3758.107.bjr-2020-0200.r2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410.
Collapse
Affiliation(s)
- Zili Liu
- Department of Microscopic Orthopedics, The Hefei Second People's Hospital & Hefei Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Wang
- Department of Microscopic Orthopedics, The Hefei Second People's Hospital & Hefei Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaoqian Wang
- Department of Microscopic Orthopedics, The Hefei Second People's Hospital & Hefei Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Gao
- Department of Microscopic Orthopedics, The Hefei Second People's Hospital & Hefei Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Niu
- Department of Microscopic Orthopedics, The Hefei Second People's Hospital & Hefei Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Shoot Multiplication and Callus Induction of Labisia pumila var. alata as Influenced by Different Plant Growth Regulators Treatments and Its Polyphenolic Activities Compared with the Wild Plant. Molecules 2021; 26:molecules26113229. [PMID: 34072168 PMCID: PMC8198644 DOI: 10.3390/molecules26113229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.
Collapse
|
7
|
Ma X, Zhang Z, Shen M, Ma Y, Li R, Jin X, Gao L, Wang Z. Changes of type II collagenase biomarkers on IL-1β-induced rat articular chondrocytes. Exp Ther Med 2021; 21:582. [PMID: 33850554 PMCID: PMC8027747 DOI: 10.3892/etm.2021.10014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is characterized by progressive degeneration of cartilage, formation of cartilage at the cartilage edge, and remodeling of the subchondral bone. Pro-inflammatory cytokines [e.g., interleukin (IL)-1β] that induce inflammation and promote chondrocyte damage induce OA. Currently, the diagnosis of OA is commonly based on imaging examinations (e.g., X-ray) and evaluations of clinical symptoms; however, biomarkers that can effectively diagnose OA are currently not available. By studying the mechanism underlying OA cartilage injury and changes in the concentrations of the biomarkers procollagen type II carboxy-terminal propeptide (PIICP), collagen type-II C-telopeptide fragments (CTX-II), and type II collagen cleavage neoepitope (C2C) during pathogenesis, the present study established a theoretical basis for the evaluation and early diagnosis of OA. In an experiment, 10 ng/ml IL-1β was used to the treat chondrocyte-induced OA models in vitro for 0, 12, 24 and 48 h. Western blotting was used to detect the expression levels of matrix metalloproteinase (MMP)-3, MMP-13, and inducible nitric oxide synthase (iNOS) protein at each time-point. The concentrations of CTX-II, C2C, and PIICP in the cell culture supernatant were detected by ELISA kit. A biochemical kit was used to detect changes of nitric oxide (NO) in the cell culture supernatant. In addition, chondrocytes were treated with 10 ng/ml IL-1β for 0, 30, 60 and 90 min and the translocation and phosphorylation of the NF-κB pathway were investigated by western blotting. Following IL-1β stimulation, the NF-κB pathway was activated to increase the expression levels of MMPs and iNOS synthesis downstream of the pathway, resulting in an increased degradation of type II collagen (Col II). To sum up, pro-inflammatory IL-1β induced an OA chondrocyte model. During the development of OA, the expression of MMPs and NO increased and Col II was degraded.
Collapse
Affiliation(s)
- Xiangying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhiheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meilun Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yuanqiang Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Rouqian Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhi Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, P.R. China
| |
Collapse
|
8
|
Tian L, Su Z, Ma X, Wang F, Guo Y. Inhibition of miR-203 Ameliorates Osteoarthritis Cartilage Degradation in the Postmenopausal Rat Model: Involvement of Estrogen Receptor α. HUM GENE THER CL DEV 2020; 30:160-168. [PMID: 31711313 DOI: 10.1089/humc.2019.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
miR-203 is known to target estrogen receptor α (ERα) in various cancer cell lines, such as MCF-7. However, whether miR-203 regulates ERα and contributes to the onset and progression of osteoarthritis (OA) is poorly understood. A combined protocol of the bilateral ovariectomy and the intra-articular monosodium iodoacetate injection was applied to establish a postmenopausal OA model in rats. Real-time quantitative polymerase chain reaction was used to detect miR-203 and mRNAs and Western blotting was exploited to quantify the expression levels on the protein level. Enzyme-linked immunosorbent assays were deployed to detect the expression of matrix metalloproteinase-1 (MMP-1), MMP-3, prostaglandin E2 (PGE2), and collagen type II degradation (CTX-II) in serum samples. Dual-luciferase reporter assay was utilized to confirm the direct binding of miR-203 on ERα in postmenopausal OA rats. Expression of miR-203 was elevated; while ERα mRNA and protein were downregulated in postmenopausal OA rats, compared with sham rats. Dual-luciferase reporter assay confirmed miR-203 bound and negatively regulated ERα, resulting in promoted cellular inflammation and cartilage destruction in postmenopausal OA rats. Suppression of miR-203 using a specific inhibitor ameliorated cartilage degradation in postmenopausal OA rats. miR-203 is pivotal in the onset and progression of OA in the postmenopausal rat model, and holds promise for a therapeutic target of OA treatment.
Collapse
Affiliation(s)
- Lijun Tian
- Department of Orthopaedic Trauma Dept. 2, the Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Zhiyong Su
- Department of Orthopaedic Surgery Dept. 3, People's Hospital of Luancheng, Shijiazhuang, Hebei, China
| | - Xiaobin Ma
- Department of Orthopaedic Surgery, Liulintun Center Health Hospital of Luancheng, Shijiazhuang, Hebei, China
| | - Feng Wang
- Department of Spine Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yusong Guo
- Department of Orthopaedic Trauma Dept. 2, the Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Madzuki IN, Lau SF, Mohamad Shalan NAA, Mohd Ishak NI, Mohamed S. Does cartilage ERα overexpression correlate with osteoarthritic chondrosenescence? Indications from Labisia pumila OA mitigation. J Biosci 2019. [DOI: 10.1007/s12038-019-9907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhang Q, Wang Y, Zhang M, Ying H. Green tea polyphenols attenuate LPS-induced inflammation through upregulating microRNA-9 in murine chondrogenic ATDC5 cells. J Cell Physiol 2019; 234:22604-22612. [PMID: 31102286 DOI: 10.1002/jcp.28826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteoarthritis (OA), a universal chronic musculoskeletal disorder, is closely related to inflammation. More effective drugs for improving OA outcome are definitely needed. Herein, we attempted to verify the protective role of green tea polyphenols (GTP) after treatment with murine in ATDC5 cells to reveal the regulatory mechanism. METHODS ATDC5 cells were stimulated with lipopolysaccharide (LPS) to mimic an inflammatory response during OA. Cell activity, apoptosis, levels of relative proteins, and prophlogistic factors were tested via a Cell Counting Kit-8 experiment, a flow cytometry experiment, western blot, and RT-qPCR (ELISA and Western blot), separately. miR-9 level was detected by RT-qPCR and altered via miR-9 mimic and inhibitor transfection. We finally studied MAPK and NF-κB pathways in GTP-related modulations using western blot. RESULTS LPS caused inflammatory cell damage in ATDC5 cells, showing decreased cell activity, enhanced apoptosis, and increased levels of pro-inflammatory cytokines. GTP pretreatments could significantly attenuate LPS-induced alterations. In addition, LPS-induced miR-9 upregulation was further positively regulated in ATDC5 cells. The effects of GTP pretreatments in LPS-caused ATDC5 cells were enhanced via miR-9 upregulation, whereas they were reduced via miR-9 suppression. Finally, we found that GTP pretreatments could suppress the MAPK and NF-κB pathways through miR-9 regulation. CONCLUSION GTP pretreatments attenuated LPS-induced inflammatory response accompanied by the suppression of the MAPK and NF-κB pathways via positively regulating miR-9 in ATDC5 cells.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yongkun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Mingran Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongliang Ying
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Madzuki IN, Lau SF, Abdullah R, Mohd Ishak NI, Mohamed S. Vernonia amygdalina inhibited osteoarthritis development by anti-inflammatory and anticollagenase pathways in cartilage explant and osteoarthritis-induced rat model. Phytother Res 2019; 33:1784-1793. [PMID: 31033070 DOI: 10.1002/ptr.6366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/05/2023]
Abstract
Vernonia amygdalina (VA) is a medicinal tropical herb for diabetes and malaria and believed to be beneficial for joint pains. The antiosteorthritis effects of VA leaf in cartilage explant assays and on postmenopausal osteoarthritis (OA) rat model were investigated. The VA reduced the proteoglycan and nitric oxide release from the cartilage explants with interleukin 1β (IL-1β) stimulation. For the preclinical investigation, ovariectomized (OVX) female rats were grouped (n = 8) into nontreated OA, OA + diclofenac (5 mg/kg), OA + VA extract (150 and 300 mg/kg), and healthy sham control. Monosodium iodoacetate was injected into the knee joints to accelerate OA development. After 8 weeks, the macroscopic, microscopic, and histological images showed that the OA rats treated with VA 300 mg/kg and diclofenac had significantly reduced cartilage erosions and osteophytes unlike the control OA rats. The extract significantly down-regulated the inflammatory prostaglandin E2, nuclear factor κβ, IL-1β, ADAMTS-5, collagen type 10α1, and caspase3 in the OVX-OA rats. It up-regulated the anti-inflammatory IL-10 and collagen type 2α1 mRNA expressions, besides reducing serum collagenases (MMP-3 and MMP-13) and collagen type II degradation biomarker (CTX-II) levels in these rats. The VA (containing various caffeoyl-quinic acids, flavanone-O-rutinoside, luteolin, apigenin derivative and vernonioside D) suppressed inflammation, pain, collagenases as well as cartilage degradation, and improved cartilage matrix synthesis to prevent OA.
Collapse
Affiliation(s)
- Iffah Nadhira Madzuki
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Padang Besar, Malaysia
| | - Seng Fong Lau
- Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Rasedee Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | | | - Suhaila Mohamed
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
12
|
Wan Osman WN, Che Ahmad Tantowi NA, Lau SF, Mohamed S. Epicatechin and scopoletin rich Morinda citrifolia (Noni) leaf extract supplementation, mitigated Osteoarthritis via anti-inflammatory, anti-oxidative, and anti-protease pathways. J Food Biochem 2019; 43:e12755. [PMID: 31353568 DOI: 10.1111/jfbc.12755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/20/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
The scopoletin (coumarin) and epicatechin (flavonoid) rich Morinda citrifolia L. (MC) Noni leaves are non-toxic (unlike the fruits) and consumed as vegetables. The anti-osteoarthritis effects of the MC leaf extract against joint cartilage degradation and inflammation were investigated through cartilage explant cultures and pre-clinical animal study. Osteoarthritis were induced by intra-articular monosodium iodoacetate injection into the right knee. The extract, scopoletin and epicatechin, suppressed glycosaminoglycan and nitric oxide release from the cartilage explant in the presence of Interleukin-1β. After 28 days, the extract treatment reduced the in vivo serum levels and joint tissues mRNA expressions for joint cartilage degradation, aggrecanase, and collagenase biomarkers. The extract increased the bone formation marker PINP levels, besides improving the articular cartilage structure and chondrocytes cellularity. The extract improved bone formation/repair, subchondral bone structure, strength and integrity, as well as cartilage synthesis by suppressing inflammation, nitric oxide production, joint catabolism by proteases, and oxidative stress. PRACTICAL APPLICATIONS: The scopoletin (coumarin) and epicatechin (flavonoid) rich Morinda citrifolia (Noni) leaves may be used as vegetables, functional food ingredient, or dietary supplements to suppress osteoarthritis progression against joint cartilage degradation and inflammation. The extract, scopoletin, or epicatechin, suppressed glycosaminoglycan, and nitric oxide release from the cartilage. The Morinda citrifolia leaf extract suppressed inflammation, nitric oxide production, tissues catabolism by proteases and oxidative stress to help reduce joint cartilage degradation, besides improving the articular cartilage structure, chondrocytes health, subchondral bone structure, bone formation/repair, and cartilage synthesis.
Collapse
Affiliation(s)
- Wan NurFarahin Wan Osman
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UNISZA), Terengganu, Malaysia
| | | | - Seng Fong Lau
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suhaila Mohamed
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|