1
|
Song Y, Peng Y, Wang B, Zhou X, Cai Y, Chen H, Miao C. The roles of pyroptosis in the pathogenesis of autoimmune diseases. Life Sci 2024; 359:123232. [PMID: 39537097 DOI: 10.1016/j.lfs.2024.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The occurrence of autoimmune diseases is a result of the immune system's immune response against healthy components of the body. Pyroptosis is an innovative form of programmed cell death dependent on inflammatory caspases, leading to the release of cytokines. Excessive pyroptosis can lead to a sustained inflammatory response, which may aggravate the development of autoimmune diseases. In rheumatoid arthritis (RA), tumor necrosis factor (TNF) and NLRP3 enhance pyroptosis, exacerbating the disease. In systemic lupus erythematosus (SLE), the release of nuclear antigen promotes the development of SLE. In multiple sclerosis (MS), elevated active caspase-11 in primary astrocytes induces oligodendrocyte pyroptosis, advancing MS progression. This review outlines the mechanisms of pyroptosis in autoimmune diseases. Meanwhile, we elaborated the possible therapeutic targets from the perspective of pyroptosis. We conclude that pyroptosis is expected to be a therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yingqiu Song
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanhui Peng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bing Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinyue Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yikang Cai
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Chenggui Miao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
2
|
Li S, Song H, Sun Y, Sun Y, Zhang H, Gao Z. Inhibition of soluble epoxide hydrolase as a therapeutic approach for blood-brain barrier dysfunction. Biochimie 2024; 223:13-22. [PMID: 38531484 DOI: 10.1016/j.biochi.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.
Collapse
Affiliation(s)
- Shuo Li
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huijia Song
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanping Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yongjun Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huimin Zhang
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Zibin Gao
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Jeon KB, Kim J, Lim CM, Park JY, Kim NY, Lee J, Oh DK, Yoon DY. Unsaturated oxidated fatty acid 12(S)-HETE attenuates TNF-α expression in TNF-α/IFN-γ-stimulated human keratinocytes. Int Immunopharmacol 2023; 120:110298. [PMID: 37207444 DOI: 10.1016/j.intimp.2023.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Chronic skin inflammatory diseases are associated with abnormal immune responses characterized by skin barrier dysfunction. Keratinocytes participate in immune homeostasis regulated by immune cells. Immune homeostasis dysfunction contributes to the pathogenesis of skin diseases mediated by pro-inflammatory cytokines and chemokines, such as tumor necrosis factor (TNF)-α, which are produced by activated keratinocytes. 12(S)-Hydroxy eicosatetraenoic acid [12(S)-HETE], an arachidonic acid metabolite, has anti-inflammatory properties. However, the role of 12(S)-HETE in chronic skin inflammatory diseases has not been elucidated yet. In this study, we investigated the effect of 12(S)-HETE on TNF-α/interferon (IFN)-γ-induced pro-inflammatory cytokine and chemokine expression. Our data showed that 12(S)-HETE modulates TNF-α mRNA and protein expression in TNF-α-/IFN-γ-treated human keratinocytes. Molecular docking analyses demonstrated that 12(S)-HETE bound to extracellular signal-regulated kinase (ERK)1/2, thus preventing ERK activation and downregulating phosphorylated ERK expression. We also demonstrated that 12(S)-HETE treatment inhibited IκB and ERK phosphorylation and nuclear factor (NF)-κB, p65/p50, and CCAAT/enhancerbindingproteinβ (C/EBPβ) translocation. Overall, our results showed that 12(S)-HETE attenuated TNF-α expression and secretion by inhibiting the mitogen-activated protein kinase ERK/NF-κB and C/EBPβ signaling pathways. Overall, these results suggest that 12(S)-HETE effectively resolved TNF-α-induced inflammation.
Collapse
Affiliation(s)
- Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Qin T, Rong X, Zhang X, Kong L, Kang Y, Liu X, Hu M, Liang H, Tie C. Lipid Mediators Metabolic Chaos of Asthmatic Mice Reversed by Rosmarinic Acid. Molecules 2023; 28:molecules28093827. [PMID: 37175237 PMCID: PMC10179739 DOI: 10.3390/molecules28093827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a common chronic inflammatory disease of the airways with no known cure. Lipid mediators (LMs) are a kind of inflammatory signaling molecules which are believed to be involved in the development of asthma. Hyssopus cuspidatus Boriss. is a traditional Uyghur medicine, which is widely used in the treatment of asthma and other respiratory diseases. Extraction of Hyssopus cuspidatus Boriss. was reported to neutralize asthma symptoms. The purpose of the study was to investigate both the anti-inflammatory and immunoregulation properties of the Hyssopus cuspidatus Boriss. extract (SXCF) and its main active constituent, rosmarinic acid (RosA), in vivo. The effect of RosA, a major constituent of SXCF, was evaluated on an asthmatic model, with both anti-inflammatory and immunoregulation properties. MATERIALS AND METHODS Anti-inflammatory effect of SXCF and RosA was assessed using OVA-induced asthma model mice by UPLC-MS/MS method. RESULTS Overall, RosA played a critical role in anti-asthma treatment. In total, 90% of LMs species that were significantly regulated by SXCF were covered. On the most important LMs associated with asthma, RosA equivalent induced similar effects as SXCF did. It is believed that some constituents in SXCF could neutralize RosA excessive impacts on LMs.
Collapse
Affiliation(s)
- Tuo Qin
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Xiaojuan Rong
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lingfei Kong
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Yutong Kang
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xuanlin Liu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Mengying Hu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Handong Liang
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Cai Tie
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
5
|
Dang H, Chen W, Chen L, Huo X, Wang F. TPPU inhibits inflammation-induced excessive autophagy to restore the osteogenic differentiation potential of stem cells and improves alveolar ridge preservation. Sci Rep 2023; 13:1574. [PMID: 36709403 PMCID: PMC9884285 DOI: 10.1038/s41598-023-28710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Inflammation-induced autophagy is a double-edged sword. Dysfunction of autophagy impairs the differentiation capacity of mesenchymal stem cells and enhances inflammation-induced bone loss. Tooth extraction with periodontal and/or endodontic lesions exacerbates horizontal and vertical resorption of alveolar bone during the healing period. Alveolar socket preservation (ASP) procedure following tooth extraction has important clinical implications for future prosthodontic treatments. Studies have shown that epoxyeicosatrienoic acids (EETs) have significant anti-inflammatory effects and participate in autophagy. However, whether EETs can minimize alveolar bone resorption and contribute to ASP by regulating autophagy levels under inflammatory conditions remain elusive. Here, we figured out that LPS-induced inflammatory conditions increased the inflammatory cytokine and inhibited osteogenic differentiation of human dental pulp stem cells (hDPSCs), and led to excessive autophagy of hDPSCs. Moreover, we identified that increased EETs levels using TPPU, a soluble epoxide hydrolase inhibitor, reversed these negative outcomes. We further demonstrated the potential of TPPU to promote early healing of extraction sockets and ASP, and speculated that it was related to autophagy. Taken together, these results suggest that targeting inhibition of soluble epoxide hydrolase using TPPU plays a protective role in the differentiation and autophagy of mesenchymal stem cells and provides potential feasibility for applying TPPU for ASP, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Haixia Dang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.,School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Lan Chen
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xinru Huo
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China. .,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116086, China.
| |
Collapse
|
6
|
Zhao Y, Li R. Overview of the anti-inflammatory function of the innate immune sensor NLRC3. Mol Immunol 2023; 153:36-41. [PMID: 36403432 DOI: 10.1016/j.molimm.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The innate immune system is the first line of defense for the host against any microbial attack. It can quickly identify microorganisms and produce an immune response, removing pathogenic microorganisms. However, a strong immune response might lead to excessive inflammation and even autoimmune diseases. NLRC3 is an important regulator of innate immune system homeostasis. It is a member of the anti-inflammatory NLR family and can inhibit excessive immune response in the body. In this review, we primarily focused on the current research progress on NLRC3 and its potential application. It can decrease the production of pro-inflammatory cytokines by inhibiting the NF-κB, MAK-ERK, PI3K-mTOR, IL-6/JAK2/STAT3, and cGAS-STING pathways. It also inhibits inflammatory responses by interfering with the assembly and activity of the NLRP3 inflammasome complexes. Additionally, NLRC3 can also reduce the functions of some antigen-presenting cells and their ability to activate and polarize CD4+ T cells into Th1 and Th17 subsets. NLRC3 is closely related to the development of tumors, infectious diseases, autoimmune diseases, and AD. These diseases might be treated effectively by regulating the expression of NLRC3.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, PR. China; The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine,University of Science and Technology of China, Hefei, 230026, PR. China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR. China.
| |
Collapse
|
7
|
Liang Y, Zhang D, Gong J, He W, Jin J, He Q. Mechanism study of Cordyceps sinensis alleviates renal ischemia–reperfusion injury. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Cordyceps sinensis (C. sinensis) is a kind of traditional Chinese medicine commonly used to protect renal function and relieve kidney injury. This study aimed to reveal the renal protective mechanism of C. sinensis in renal ischemia–reperfusion injury (RIRI). First, we obtained 8 active components and 99 common targets of C. sinensis against RIRI from public databases. Second, we have retrieved 38 core targets through STRING database analysis. Third, Gene Ontology analysis of 38 core targets is indicated that C. sinensis treatment RIRI may related hormone regulation, oxidative stress, cell proliferation, and immune regulation. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of 38 core targets is indicated that C. sinensis treatment RIRI may involve in PI3K–Akt, HIF-1, and MAPK signaling pathways, as well as advanced glycation end product (AGE)–receptor for AGE (RAGE) signaling pathway in diabetic complications. Lastly, molecular docking was used to detect the binding activity and properties of active components and core target using molecular docking. And the results showed that eight active components of C. sinensis had low affinity with core targets. In conclusion, C. sinensis may improve RIRI by regulating oxidative stress and immunity through PI3K–Akt, HIF-1, and MAPK pathways.
Collapse
Affiliation(s)
- Yan Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Di Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Jianguang Gong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Qiang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| |
Collapse
|
8
|
Sun D, Xu J, Zhang W, Song C, Gao C, He Y, Shang Y. Negative regulator NLRC3: Its potential role and regulatory mechanism in immune response and immune-related diseases. Front Immunol 2022; 13:1012459. [PMID: 36341336 PMCID: PMC9630602 DOI: 10.3389/fimmu.2022.1012459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
NLRC3 is a member of the pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) family, and plays a pivotal regulatory role in modulating the activation of immune cells. In macrophages, NLRC3 inhibits the activation of the NF-κB signaling pathway, the STING/TBK1 signaling pathway, and the formation of the inflammasome. In the context of T cells immune response, NLRC3 prevents the activation of T cells by regulating the function of dendritic cells and directly influencing the function of T cells. Different from other pattern recognition receptors, NLRC3 is more closely associated with regulatory activity than pathogens recognition, it influences the fates of cells, for example, prevents proliferation, promotes apoptosis and inhibits pyroptosis. These cellular functions regulated by NLRC3 are involved in the development processes of a variety of diseases, such as infectious disease, sterile inflammatory diseases, and cancer. However, its characteristics, function and regulatory mechanism in immune response and immune-related diseases have not been addressed fully. In this review, we elaborate the potential roles of NLRC3 from several different levels, include molecular mechanism, cellular functions in the immune-related diseases.
Collapse
Affiliation(s)
- Deyi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiqian Xu, ; You Shang,
| | - Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiqian Xu, ; You Shang,
| |
Collapse
|
9
|
Wang J, Chen S, Zhang J, Wu J. Scutellaria baicalensis georgi is a promising candidate for the treatment of autoimmune diseases. Front Pharmacol 2022; 13:946030. [PMID: 36188625 PMCID: PMC9524225 DOI: 10.3389/fphar.2022.946030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases a group of disorders elicited by unexpected outcome of lymphocytes self-tolerance failure, and the common members of which include multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, rheumatoid arthritis, and type 1 diabetes mellitus, etc. The pathogenesis of autoimmune diseases is not fully understood and the current therapeutic regimen’s inefficacy in certain cases coupled with low rates of success, exorbitant financial burden, as well as numerous side effects, which do open new avenues for the role of natural products as novel therapeutic agents for auto-inflammatory disorders. Scutellaria baicalensis Georgi is a well-known and widely-recognized herbal medicine with certain ameliorative effect on diverse inflammation-involved dysfunction. Though recent advances do highlight its potential to be applied in the fight against autoimmune diseases, the specific mechanism and the related opinion on the exploring possibility are still limited which hampered the further progress. Here in this timeline review, we traced and collected the evidence of how Scutellaria baicalensis Georgi and its bioactive contents, namely baicalin, baicalein, wogonoside and wogonin affect autoimmune diseases. Moreover, we also discussed the clinical implications and therapeutic potential of Scutellaria baicalensis Georgi and its bioactive contents in autoimmune diseases treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy and Emergency, Yaan People’s Hospital, Yaan, PR, China
| | - Shanshan Chen
- Department of Pharmacy and Emergency, Yaan People’s Hospital, Yaan, PR, China
| | - Jizhou Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR, China
- *Correspondence: Jiasi Wu,
| |
Collapse
|
10
|
Liang F, Qin W, Zeng Y, Wang D. Modulation of Autoimmune and Autoinflammatory Diseases by Gasdermins. Front Immunol 2022; 13:841729. [PMID: 35720396 PMCID: PMC9199384 DOI: 10.3389/fimmu.2022.841729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Autoimmune diseases and autoinflammatory diseases are two types of the immune system disorders. Pyroptosis, a highly inflammatory cell death, plays an important role in diseases of immune system. The gasdermins belong to a pore-forming protein gene family which are mainly expressed in immune cells, gastrointestinal tract, and skin. Gasdermins are regarded as an executor of pyroptosis and have been shown to possess various cellular functions and pathological effects such as pro-inflammatory, immune activation, mediation of tumor, etc. Except for infectious diseases, the vital role of gasdermins in autoimmune diseases, autoinflammatory diseases, and immune-related neoplastic diseases has been proved recently. Therefore, gasdermins have been served as a potential therapeutic target for immune disordered diseases. The review summarizes the basic molecular structure and biological function of gasdermins, mainly discusses their role in autoimmune and autoinflammatory diseases, and highlights the recent research on gasdermin family inhibitors so as to provide potential therapeutic prospects.
Collapse
Affiliation(s)
- Fang Liang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weixiao Qin
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Bocharova NV, Kovalenko IS. [Fatty acid epoxides in the regulation of the inflammation]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:177-189. [PMID: 35717582 DOI: 10.18097/pbmc20226803177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclooxygenase and lipoxygenase derived lipid metabolites of polyunsaturated fatty acids (PUFAs), as well as their role in the inflammation, have been studied quite thoroughly. However, cytochrome P450 derived lipid mediators, as well as their participation in the regulation of the inflammation, need deeper understanding. In recent years, it has become known that PUFAs are oxidized by cytochrome P450 epoxygenases to epoxy fatty acids, which act as the extremely powerful lipid mediators involved in resolving inflammation. Recent studies have shown that the anti-inflammatory mechanisms of ω-3 PUFAs are also mediated by their conversion to the endocannabinoid epoxides. Thus, it is clear that a number of therapeutically relevant functions of PUFAs are due to their conversion to PUFA epoxides. However, with the participation of cytochrome P450 epoxygenases, not only PUFA epoxides, but also other metabolites are formed. They are further are converted by epoxide hydrolases into pro-inflammatory dihydroxy fatty acids and anti-inflammatory dihydroxyeicosatrienoic acids. The study of the role of PUFA epoxides in the regulation of the inflammation and pharmacological modeling of the activity of epoxide hydrolases are the promising strategies for the treatment of the inflammatory diseases. This review systematizes the current literature data of the fatty acid epoxides, in particular, the endocannabinoid epoxides. Their role in the regulation of inflammation is discussed.
Collapse
Affiliation(s)
- O Y Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Y K Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - T P Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - N V Bocharova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - I S Kovalenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
12
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
13
|
Zhou JT, Ren KD, Hou J, Chen J, Yang G. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Mol Med Rep 2021; 24:799. [PMID: 34523697 PMCID: PMC8456313 DOI: 10.3892/mmr.2021.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW246.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.
Collapse
Affiliation(s)
- Jiang Tao Zhou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Kai Da Ren
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jing Hou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
14
|
Yin J, Wan J, Zhu J, Zhou G, Pan Y, Zhou H. Global trends and prospects about inflammasomes in stroke: a bibliometric analysis. Chin Med 2021; 16:53. [PMID: 34233704 PMCID: PMC8265129 DOI: 10.1186/s13020-021-00464-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sterile inflammation is a key pathological process in stroke. Inflammasome activation has been implicated in various inflammatory diseases, including ischemic stroke and hemorrhagic stroke. Hence, targeting inflammasomes is a promising approach for the treatment of stroke. Methods We applied bibliometric methods and techniques. The Web of Science Core Collection was searched for studies indexed from database inception to November 26, 2020. We generated various visual maps to display publications, authors, sources, countries, and keywords. Results Our literature search yielded 427 publications related to inflammasomes involved in stroke, most of which consisted of original research articles and reviews. In particular, we found that there was a substantial increase in the number of relevant publications in 2018. Furthermore, most of the publications with the highest citation rates were published in 2014. Relatively, the field about inflammasomes in stroke developed rapidly in 2014 and 2018. Many institutions contributed to these publications, including those from China, the United States, and worldwide. We found that NLR family pyrin domain containing 3 (NLRP3) was the most studied, followed by NLRP1, NLRP2, and NLRC4 among the inflammasomes associated with stroke. Analysis of keywords suggested that the most studied mechanisms involved dysregulation of extracellular pH, efflux of Ca2+ ions, dysfunction of K+/Na+ ATPases, mitochondrial dysfunction, and damage to mitochondrial DNA. Conclusions Given the potential diagnostic and therapeutic implications, the specific mechanisms of inflammasomes contributing to stroke warrant further investigation. We used bibliometric methods to objectively present the global trend of inflammasomes in stroke, and to provide important information for relevant researchers.
Collapse
Affiliation(s)
- Junjun Yin
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Jiayang Wan
- Peking University First Hospital, Beijing, 100034, China
| | - Jiaqi Zhu
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Yuming Pan
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
15
|
Jonnalagadda D, Wan D, Chun J, Hammock BD, Kihara Y. A Soluble Epoxide Hydrolase Inhibitor, 1-TrifluoromethoxyPhenyl-3-(1-Propionylpiperidin-4-yl) Urea, Ameliorates Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2021; 22:ijms22094650. [PMID: 33925035 PMCID: PMC8125305 DOI: 10.3390/ijms22094650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are essential FAs for human health. Cytochrome P450 oxygenates PUFAs to produce anti-inflammatory and pain-resolving epoxy fatty acids (EpFAs) and other oxylipins whose epoxide ring is opened by the soluble epoxide hydrolase (sEH/Ephx2), resulting in the formation of toxic and pro-inflammatory vicinal diols (dihydroxy-FAs). Pharmacological inhibition of sEH is a promising strategy for the treatment of pain, inflammation, cardiovascular diseases, and other conditions. We tested the efficacy of a potent, selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Prophylactic TPPU treatment significantly ameliorated EAE without affecting circulating white blood cell counts. TPPU accumulated in the spinal cords (SCs), which was correlated with plasma TPPU concentration. Targeted lipidomics in EAE SCs and plasma identified that TPPU blocked production of dihydroxy-FAs efficiently and increased some EpFA species including 12(13)-epoxy-octadecenoic acid (12(13)-EpOME) and 17(18)-epoxy-eicosatrienoic acid (17(18)-EpETE). TPPU did not alter levels of cyclooxygenase (COX-1/2) metabolites, while it increased 12-hydroxyeicosatetraenoic acid (12-HETE) and other 12/15-lipoxygenase metabolites. These analytical results are consistent with sEH inhibitors that reduce neuroinflammation and accelerate anti-inflammatory responses, providing the possibility that sEH inhibitors could be used as a disease modifying therapy, as well as for MS-associated pain relief.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (D.J.); (J.C.)
| | - Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA; (D.W.); (B.D.H.)
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (D.J.); (J.C.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA; (D.W.); (B.D.H.)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (D.J.); (J.C.)
- Correspondence:
| |
Collapse
|
16
|
Hassan HM, Al-Wahaibi LH, Shehatou GS, El-Emam AA. Adamantane-linked isothiourea derivatives suppress the growth of experimental hepatocellular carcinoma via inhibition of TLR4-MyD88-NF-κB signaling. Am J Cancer Res 2021; 11:350-369. [PMID: 33575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, in vitro cytotoxic effects of seven adamantyl isothiourea derivatives were evaluated against five human tumor cell lines using the MTT assay. Compounds 5 and 6 were found to be the most active derivatives particularly against hepatocellular carcinoma (HCC). To decipher the potential mechanisms involved, in vivo studies were conducted in rats by inducing HCC via chronic thioacetamide (TAA) administration (200 mg/kg, i.p., twice weekly) for 16 weeks. Compounds 5 and 6 were administered to HCC rats, at a dose of 10 mg/kg/day, for further 2 weeks. In vitro and in vivo antitumor activities of compounds 5 and 6 were compared to those of the anticancer drug doxorubicin (DOXO). In the HCC rat model, compounds 5 and 6 significantly reduced serum levels of ALT, AST with ALP and α-fetoprotein. H & E and Masson trichrome staining revealed that both compounds suppressed hepatocyte tumorigenesis and diminished fibrosis, inflammation and other histopathological alterations. Mechanistically, compounds 5 and 6 markedly decreased protein expression levels of α-SMA, sEH, p-NF-κB p65, TLR4, MyD88, TRAF-6, TNF-α, IL-1β and TGF-β1, whereas they increased caspase-3 expression in liver tissues of HCC rats. In most analyses, the effects of compound 6 were more comparable to DOXO than compound 5. These findings suggested that the compounds 5 and 6 displayed in vitro and in vivo cytotoxic potential against HCC, probably via inhibition of TLR4-MyD88-NF-κB signaling.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology International Costal Road, Gamasa 11152, Mansoura, Egypt
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University Riyadh 11671, Saudi Arabia
| | - George Sg Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology International Costal Road, Gamasa 11152, Mansoura, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University Mansoura 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516, Egypt
| |
Collapse
|
17
|
Cagli A, Senol SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S, Tunctan B. Soluble epoxide hydrolase inhibitor trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea prevents hyperalgesia through regulating NLRC4 inflammasome-related pro-inflammatory and anti-inflammatory signaling pathways in the lipopolysaccharide-induced pain mouse model. Drug Dev Res 2021; 82:815-825. [PMID: 33559150 DOI: 10.1002/ddr.21786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) have anti-inflammatory effects and soluble epoxide hydrolase (sEH) inhibition might be a useful therapeutic approach to manage inflammatory disorders. The purpose of the study was to investigate whether nucleotide-binding and oligomerization domain-like receptor (NLR) C4 inflammasome-related pro-inflammatory and anti-inflammatory signaling pathways in the central nervous system (CNS) participates in the effect of trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent sEH inhibitor, to prevent hyperalgesia in the LPS-induced pain mouse model. The latency of pain within 30 s was measured by the hot plate test in male mice injected with saline, lipopolysaccharide (LPS) (10 mg/kg), and/or TPPU (0.3, 0.5, or 1 mg/kg) after 6 h. Hyperalgesia induced by LPS was associated with decreased 14,15-dihydroxyeicosatrienoic acid and interleukin (IL)-1β levels and enhanced expression of NLRC4, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), caspase-1 p20, IL-1β, and caspase-11 p20 in the brains and spinal cords of the animals. Besides the increased expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) subunits (gp91phox and p47phox ) and nitrotyrosine, a decrease in NLRC3, inducible nitric oxide synthase (iNOS), and neuronal NOS (nNOS) expression was also observed in the tissues of LPS-treated mice. TPPU at 0.5 mg/kg dose prevented the changes induced by LPS. Likely, decreased activity of pro-inflammatory NLRC4/ASC/pro-caspase-1 and caspase-11 inflammasomes and NOX in addition to enhanced levels of anti-inflammatory EETs and expression of NLRC3, iNOS, and nNOS in the CNS of mice participates in the protective effect of TPPU against LPS-induced hyperalgesia.
Collapse
Affiliation(s)
- Ali Cagli
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ayse Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
18
|
Pyroptosis by caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases. Pharmacol Res 2021; 165:105408. [PMID: 33412278 DOI: 10.1016/j.phrs.2020.105408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Inflammasomes are a group of supramolecular complexes primarily comprise a sensor, adaptor protein and an effector. Among them, canonical inflammasomes are assembled by one specific pattern recognition receptor, the adaptor protein apoptosis-associated speck-like protein containing a CARD and procaspase-1. Murine caspase-11 and its human ortholog caspase-4/5 are identified as cytosolic sensors which directly responds to LPS. Once gaining access to cytosol, LPS further trigger inflammasome activation in noncanonical way. Downstream pore-forming Gasdermin D is a pyroptosis executioner. Emerging evidence announced in recent years demonstrate the vital role played by caspase-11 non-canonical inflammasome in a range of autoimmune diseases. Pharmacological ablation of caspase-11 and its related effector results in potent therapeutic effects. Though recent advances have highlighted the potential of caspase-11 as a drug target, the understanding of caspase-11 molecular activation and regulation mechanism remains to be limited and thus hampered the discovery and progression of novel inhibitors. Here in this timeline review, we explored how caspase-11 get involved in the pathogenesis of autoimmune diseases, we also collected the reported small-molecular caspase-11 inhibitors. Moreover, the clinical implications and therapeutic potential of caspase-11 inhibitors are discussed. Targeting non-canonical inflammasomes is a promising strategy for autoimmune diseases treatment, while information about the toxicity and physiological disposition of the promising caspase-11 inhibitors need to be supplemented before they can be translated from bench to bedside.
Collapse
|
19
|
O'Brien CE, Santos PT, Kulikowicz E, Lee JK, Koehler RC, Martin LJ. Neurologic effects of short-term treatment with a soluble epoxide hydrolase inhibitor after cardiac arrest in pediatric swine. BMC Neurosci 2020; 21:43. [PMID: 33129262 PMCID: PMC7603774 DOI: 10.1186/s12868-020-00596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac arrest (CA) is the most common cause of acute neurologic insult in children. Many survivors have significant neurocognitive deficits at 1 year of recovery. Epoxyeicosatrienoic acids (EETs) are multifunctional endogenous lipid signaling molecules that are involved in brain pathobiology and may be therapeutically relevant. However, EETs are rapidly metabolized to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH), limiting their bioavailability. We hypothesized that sEH inhibition would improve outcomes after CA in an infant swine model. Male piglets (3-4 kg, 2 weeks old) underwent hypoxic-asphyxic CA. After resuscitation, they were randomized to intravenous treatment with an sEH inhibitor (TPPU, 1 mg/kg; n = 8) or vehicle (10% poly(ethylene glycol); n = 9) administered at 30 min and 24 h after return of spontaneous circulation. Two sham-operated groups received either TPPU (n = 9) or vehicle (n = 8). Neurons were counted in hematoxylin- and eosin-stained sections from putamen and motor cortex in 4-day survivors. RESULTS Piglets in the CA + vehicle groups had fewer neurons than sham animals in both putamen and motor cortex. However, the number of neurons after CA did not differ between vehicle- and TPPU-treated groups in either anatomic area. Further, 20% of putamen neurons in the Sham + TPPU group had abnormal morphology, with cell body attrition and nuclear condensation. TPPU treatment also did not reduce neurologic deficits. CONCLUSION Treatment with an sEH inhibitor at 30 min and 24 h after resuscitation from asphyxic CA does not protect neurons or improve acute neurologic outcomes in piglets.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA.
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| |
Collapse
|
20
|
Yavarpour-Bali H, Ghasemi-Kasman M. The role of inflammasomes in multiple sclerosis. Mult Scler 2020; 27:1323-1331. [PMID: 32539629 DOI: 10.1177/1352458520932776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS) is considered as an inflammatory autoimmune disease of the central nervous system (CNS), with a complex and heterogenic etiology. However, the involvement of inflammation in its pathophysiology is well documented and current therapies for MS are mainly immunosuppressive drugs. Although the available drugs reduce new lesions and relapses, their long-term outcome is not completely satisfactory. Inflammasomes are multimeric protein complexes that play a critical role in the inflammatory process. Several lines of evidence suggest an association between inflammasome activation and MS. In this paper, we have reviewed current studies that demonstrate the involvement of inflammasomes in MS development, in both animal model and MS patients. Furthermore, prior studies about the effect of inflammasome inhibitor drugs on development and progression of MS are discussed.
Collapse
Affiliation(s)
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran/Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|