1
|
Soleimani M, Ebrahimi Z, Ebrahimi KS, Farhadian N, Shahlaei M, Cheraqpour K, Ghasemi H, Moradi S, Chang AY, Sharifi S, Baharnoori SM, Djalilian AR. Application of biomaterials and nanotechnology in corneal tissue engineering. J Int Med Res 2023; 51:3000605231190473. [PMID: 37523589 PMCID: PMC10392709 DOI: 10.1177/03000605231190473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Corneal diseases are among the most common causes of blindness worldwide. Regardless of the etiology, corneal opacity- or globe integrity-threatening conditions may necessitate corneal replacement procedures. Several procedure types are currently available to address these issues, based on the complexity and extent of injury. Corneal allograft or keratoplasty is considered to be first-line treatment in many cases. However, a significant proportion of the world's population are reported to have no access to this option due to limitations in donor preparation. Thus, providing an appropriate, safe, and efficient synthetic implant (e.g., artificial cornea) may revolutionize this field. Nanotechnology, with its potential applications, has garnered a lot of recent attention in this area, however, there is seemingly a long way to go. This narrative review provides a brief overview of the therapeutic interventions for corneal pathologies, followed by a summary of current biomaterials used in corneal regeneration and a discussion of the nanotechnologies that can aid in the production of superior implants.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zohreh Ebrahimi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Sadat Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ghasemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sina Sharifi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Seyed Mahbod Baharnoori
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zidarič T, Skok K, Orthaber K, Pristovnik M, Gradišnik L, Maver T, Maver U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2361. [PMID: 36984241 PMCID: PMC10053588 DOI: 10.3390/ma16062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings' physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
The Historical Development and an Overview of Contemporary Keratoprostheses. Surv Ophthalmol 2022; 67:1175-1199. [DOI: 10.1016/j.survophthal.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/24/2022]
|
4
|
Lace R, Duffy GL, Gallagher AG, Doherty KG, Maklad O, Wellings DA, Williams RL. Characterization of Tunable Poly-ε-Lysine-Based Hydrogels for Corneal Tissue Engineering. Macromol Biosci 2021; 21:e2100036. [PMID: 33955160 DOI: 10.1002/mabi.202100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Indexed: 12/15/2022]
Abstract
A family of poly-ε-lysine hydrogels can be synthesized by crosslinking with bis-carboxylic acids using carbodiimide chemistry. In addition to creating hydrogels using a simple cast method, a fragmented method is used to introduce increased porosity within the hydrogel structure. Both methods have created tunable characteristics ranging in their mechanical properties, transparency, and water content, which is of interest to corneal tissue engineering and can be tailored to specific cellular needs and applications. With a worldwide shortage of cornea donor tissue available for transplant and limitations including rejection and potential infection, a synthetic material that can be used as a graft, or a partial thickness corneal replacement, would be an advantageous treatment method. These hydrogels can be tuned to have similar mechanical and transparency properties to the human cornea. They also support the attachment and growth of corneal epithelial cells and the integration of corneal stromal cells.
Collapse
Affiliation(s)
- Rebecca Lace
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Georgia L Duffy
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Andrew G Gallagher
- SpheriTech Ltd., Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Kyle G Doherty
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Osama Maklad
- School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | - Donald A Wellings
- SpheriTech Ltd., Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
5
|
Wang J, Chen Y, Bai Y, Quan D, Wang Z, Xiong L, Shao Z, Sun W, Mi S. A core-skirt designed artificial cornea with orthogonal microfiber grid scaffold. Exp Eye Res 2020; 195:108037. [DOI: 10.1016/j.exer.2020.108037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 11/29/2022]
|
6
|
Zambrano-Andazol I, Vázquez N, Chacón M, Sánchez-Avila RM, Persinal M, Blanco C, González Z, Menéndez R, Sierra M, Fernández-Vega Á, Sánchez T, Merayo-Lloves J, Meana Á. Reduced graphene oxide membranes in ocular regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111075. [PMID: 32993970 DOI: 10.1016/j.msec.2020.111075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Biological membranes are currently used in Ophthalmology in order to treat different ocular disorders. These membranes have different properties such as cellular biocompatibility and promoting wound healing. Moreover, intrinsic antimicrobial properties could also be desirable because it would allow their use reducing the risk of infections. Graphene and its derivatives are promising biomaterials that already proved their bactericidal effect. However, their clinical use is limited due to the controversial results regarding their toxicity. In this work, we have developed and characterized a reduced graphene oxide membrane (rGOM) for its use in ocular Regenerative Medicine, and studied its in vitro and in vivo biocompatibility and genotoxicity with different types of human ocular cells. We proved that rGOM allowed the growth of different ocular cells without inducing in vitro or in vivo cytotoxicity or genotoxicity in the short-term. These results indicate that rGOM may be a promising candidate in Regenerative Medicine for the treatment of different ocular pathologies.
Collapse
Affiliation(s)
- Iriana Zambrano-Andazol
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Natalia Vázquez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Manuel Chacón
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Ronald M Sánchez-Avila
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Mairobi Persinal
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Clara Blanco
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Asturias, Spain
| | - Zoraida González
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Asturias, Spain
| | - Rosa Menéndez
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Asturias, Spain
| | - María Sierra
- Departamento de Biología Funcional, Área de Genética, Universidad de Oviedo, Asturias, Spain
| | - Álvaro Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Teresa Sánchez
- Unidad de Bioterio e Imagen Preclínica, Universidad de Oviedo, Asturias, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain
| | - Álvaro Meana
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Asturias, Spain; Centro Comunitario de Sangre y Tejidos de Asturias, Asturias, Spain. CIBERER U714.
| |
Collapse
|
7
|
Zeng Y, Fan L, Deng M, Sun P, Zhang B, Zhang Q, Li L, Xu Z. Development of high refractive and high water content polythiourethane/AA hydrogels for potential artificial cornea implants. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1596908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Youlan Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Lu Fan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Min Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Peng Sun
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Boxiao Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Quanyuan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ling Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
8
|
Ludwig PE, Huff TJ, Zuniga JM. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 2018; 9:2041731418769863. [PMID: 29686829 PMCID: PMC5900811 DOI: 10.1177/2041731418769863] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
An insufficiency of accessible allograft tissue for corneal transplantation leaves many impaired by untreated corneal disease. There is promise in the field of regenerative medicine for the development of autologous corneal tissue grafts or collagen-based scaffolds. Another approach is to create a suitable corneal implant that meets the refractive needs of the cornea and is integrated into the surrounding tissue but does not attempt to perfectly mimic the native cornea on a cellular level. Materials that have been investigated for use in the latter concept include natural polymers such as gelatin, semisynthetic polymers like gelatin methacrylate, and synthetic polymers. There are advantages and disadvantages inherent in natural and synthetic polymers: natural polymers are generally more biodegradable and biocompatible, while synthetic polymers typically provide greater control over the characteristics or property adjustment of the materials. Additive manufacturing could aid in the precision production of keratoprostheses and the personalization of implants.
Collapse
Affiliation(s)
| | - Trevor J Huff
- Creighton University School of Medicine, Omaha, NE, USA
| | - Jorge M Zuniga
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|