1
|
Xiao J, Frenia K, Garwood KC, Kimmel J, Labriola LT. High-Throughput Tear Proteomics via In-Capillary Digestion for Biomarker Discovery. Int J Mol Sci 2024; 25:12239. [PMID: 39596304 PMCID: PMC11594680 DOI: 10.3390/ijms252212239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Tear fluid has emerged as a valuable resource for biomarker discovery; however, the limited sample volume, the dynamic composition, and the variability introduced by collection methods all present significant challenges to the analysis and interpretation of the results. A majority of tear proteomic studies have utilized Schirmer strips for tear fluid collection; however, microcapillary collection can provide a superior collection method for proteomic studies when analysis procedures are optimized. We developed a novel, high-throughput in-capillary trypsin digestion workflow that requires as little as 0.5 μL of tear fluid for bottom-up shotgun proteomics. The use of a single microcentrifuge tube for both tear collection and sample processing simplifies sample handling and minimizes both the sample loss and experimental errors associated with sample transfers. This streamlined approach also reduces sample processing time to under 2 h before overnight trypsin digestion, compared to the 5-8 h required by the other methods. Our method uses liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify more proteins with greater efficiency than the existing techniques. With this workflow, we identified 500-800 proteins per 0.5 μL sample without peptide fractionation, allowing for at least three technical replicates. The results showed a four-fold increase in the number of proteins identified in the samples. This approach validates the use of microcapillary tear collection, and the innovative processing technique significantly increases the throughput of tear proteomics for biomarker discovery.
Collapse
Affiliation(s)
- James Xiao
- Retina Department, Sewickley Eye Group, Sewickley, PA 15143, USA;
| | - Kyla Frenia
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kathleen C. Garwood
- Department of Decision and System Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - Jeremy Kimmel
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
2
|
Lépine M, Zambito O, Sleno L. Targeted Workflow Investigating Variations in the Tear Proteome by Liquid Chromatography Tandem Mass Spectrometry. ACS OMEGA 2023; 8:31168-31177. [PMID: 37663498 PMCID: PMC10468840 DOI: 10.1021/acsomega.3c03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Proteins in tears have an important role in eye health and have been shown as a promising source of disease biomarkers. The goal of this study was to develop a robust, sensitive, and targeted method for profiling tear proteins to examine the variability within a group of healthy volunteers over three days. Inter-individual and inter-day variabilities were examined to contribute to understanding the normal variations in the tear proteome, as well as to establish which proteins may be better candidates as eventual biomarkers of specific diseases. Tear samples collected on Schirmer strips were subjected to bottom-up proteomics, and resulting peptides were analyzed using an optimized targeted method measuring 226 proteins by liquid chromatography-scheduled multiple reaction monitoring. This method was developed using an in-house database of identified proteins from tears compiled from high-resolution data-dependent liquid chromatography tandem mass spectrometry data. The measurement of unique peptide signals can help better understand the dynamics of each of these proteins in tears. Some interesting trends were seen in specific pathways or protein classes, including higher variabilities for those involved in glycolysis, glutathione metabolism, and cytoskeleton proteins and lower variation for those involving the degradation of the extracellular matrix. The overall aim of this study was to contribute to the field of tear proteomics with the development of a novel and targeted method that is highly amenable to the clinical laboratory using high flow LC and commonly used triple quadrupole mass spectrometry while ensuring that protein quantitation was reported based on unique peptides for each protein and robust peak areas with data normalization. These results report on variabilities on over 200 proteins that are robustly detected in tear samples from healthy volunteers with a simple sample preparation procedure.
Collapse
Affiliation(s)
- Maggy Lépine
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Oriana Zambito
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
3
|
Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. MASS SPECTROMETRY REVIEWS 2022; 41:842-860. [PMID: 33759206 PMCID: PMC9543345 DOI: 10.1002/mas.21691] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The lacrimal film has attracted increasing interest in the last decades as a potential source of biomarkers of physiopathological states, due to its accessibility, moderate complexity, and responsiveness to ocular and systemic diseases. High-performance liquid chromatography-mass spectrometry (LC-MS) has led to effective approaches to tear proteomics, despite the intrinsic limitations in sample amounts. This review focuses on the recent progress in strategy and technology, with an emphasis on the potential for personalized medicine. After an introduction on lacrimal-film composition, examples of applications to biomarker discovery are discussed, comparing approaches based on pooled-sample and single-tear analysis. Then, the most critical steps of the experimental pipeline, that is, tear collection, sample fractionation, and LC-MS implementation, are discussed with reference to proteome-coverage optimization. Advantages and challenges of the alternative procedures are highlighted. Despite the still limited number of studies, tear quantitative proteomics, including single-tear investigation, could offer unique contributions to the identification of low-invasiveness, sustained-accessibility biomarkers, and to the development of personalized approaches to therapy and diagnosis.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Antonella De Palma
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Pierluigi Mauri
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Silvia Tavazzi
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
- COMiBUniversity of Milano‐BicoccaMilanItaly
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
4
|
López-López M, Regueiro U, Bravo SB, Chantada-Vázquez MDP, Pena C, Díez-Feijoo E, Hervella P, Lema I. Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35551575 PMCID: PMC9123485 DOI: 10.1167/iovs.63.5.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The qualitative approach followed in this study aims to obtain an extensive view of the keratoconus (KC) tear proteome, which could highlight proteins previously undetected and enlarge our knowledge of the disease's pathophysiology. Methods Twenty-five patients diagnosed with KC and 25 control subjects were studied in a prospective, cross-sectional study. KC screening examinations, including clinical and tomographic examinations, were performed on all participants. Tear samples were collected using Schirmer strips and analyzed by liquid chromatography-tandem mass spectrometry in a data-dependent workflow. A spectral count was used as a semiquantification tool. The tear proteomes of both groups were identified and profiled, and the functional interactions and biological characterization of differential proteins were analyzed using in silico tools. Results We identified a total of 232 proteins, of whom 133 were expressed in both groups’ samples; 41 were observed only in control samples and 58 were identified just in tears of patients with KC. A semiquantitative analysis showed the dysregulation of 17 proteins in the KC samples. An in silico analysis linked proteins only expressed in KC samples to oxidative stress, skin development, and apoptosis. The dysregulation of proteins involved in iron transport, inflammation, oxidative stress, and protease inhibition was observed in the semiquantitative results. Conclusions A shotgun analysis showed that the tear proteome of patients with KC differed from controls by more than one-third of the total proteins identified, highlighting the relationship of the proteins only expressed in KC tears with processes of cell death, oxidative damage, and inflammation. The underexpression of proteins involved in iron pathways might support the iron imbalance as a contributing factor to cellular damage and death in KC disease.
Collapse
Affiliation(s)
- Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Carmen Pena
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elío Díez-Feijoo
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Jones G, Lee TJ, Glass J, Rountree G, Ulrich L, Estes A, Sezer M, Zhi W, Sharma S, Sharma A. Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. Int J Mol Sci 2022; 23:2307. [PMID: 35216421 PMCID: PMC8875482 DOI: 10.3390/ijms23042307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The tear film is a multi-layer fluid that covers the corneal and conjunctival epithelia of the eye and provides lubrication, nutrients, and protection from the outside environment. Tear fluid contains a high concentration of proteins and has thus been recognized as a potential source of biomarkers for ocular disorders due to its proximity to disease sites on the ocular surface and the non-invasive nature of its collection. This is particularly true in the case of dry eye disease, which directly impacts the tear film and its components. Proteomic analysis of tear fluid is challenging mainly due to the wide dynamic range of proteins and the small sample volumes. However, recent advancements in mass spectrometry have revolutionized the field of proteomics enabling unprecedented depth, speed, and accuracy, even with small sample volumes. In this study using the Orbitrap Fusion Tribrid mass spectrometer, we compared four different mass spectrometry workflows for the proteomic analysis of tear fluid collected via Schirmer strips. We were able to establish a method of in-strip protein digestion that identified >3000 proteins in human tear samples from 11 healthy subjects. Our method offers a significant improvement in the number of proteins identified compared to previously reported methods without pooling samples.
Collapse
Affiliation(s)
- Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Grace Rountree
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mary Sezer
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Sussadee M, Rucksaken R, Havanapan PO, Reamtong O, Thayananuphat A. Changes in tear protein profile in dogs with keratoconjunctivitis sicca following topical treatment using cyclosporine A. Vet World 2021; 14:1711-1717. [PMID: 34316222 PMCID: PMC8304416 DOI: 10.14202/vetworld.2021.1711-1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Keratoconjunctivitis sicca (KCS) is a chronic inflammatory ocular disease that occurs in many dog breeds worldwide. This study aimed to investigate the tear protein pattern of healthy dogs, KCS dogs, and KCS dogs after treatment with cyclosporine A (CsA). Materials and Methods Twenty-eight dogs of any breed were enrolled in the study. The subjects were divided into three groups: Healthy, KCS, and CsA-treated dogs. Tear samples were collected using Schirmer strips. Tear proteins extracted from the strips were analyzed using two-dimensional electrophoresis. For the first dimension, total protein from tears was separated by isoelectric focusing. The second dimension was performed using 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gel images were analyzed and the protein spots of differential expression were manually cut for protein annotation using mass spectrometry. Results In total, 12 protein spots were excised and subjected to protein identification. Associated with KCS, six protein spots were a downregulated protein, namely, lysozyme. The other six protein spots were upregulated in KCS dogs, consisting of heat shock protein beta-1, protein S100-A12, and keratin type II cytoskeletal 1 and 5. After treatment with CsA for 45 days, the lysozyme protein was still decreasing and the inflammation protein (S100-A12) was not identified. Conclusion Inflammatory tear proteins and proteins involved in cellular stress were present in KCS dogs and appeared to be reduced in medicated eyes. Treatment with topical CsA in the short term may not improve the activity of antibacterial proteins. Changes in the expression patterns of these four proteins might be useful for disease severity and progression assessment, as well as for exploring a novel method for dry eye management in dogs.
Collapse
Affiliation(s)
- Metita Sussadee
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Rucksak Rucksaken
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, Nakhonpathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aree Thayananuphat
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
7
|
Abstract
Purpose of Review To summarize the recent advances in transcriptomics and proteomics studies of keratoconus using advanced genome-wide gene and protein expression profiling techniques. Recent Findings Second-generation sequencing including RNA sequencing has been widely used to characterize the genome-wide gene expression in corneal tissues or cells affected by keratoconus. Due to different sample types, sequencing platforms, and analysis pipeline, different lists of genes have been identified to be differentially expressed in KC-affected samples. Gene ontology and pathway/network analyses have indicated the involvement of genes related with extracellular matrix, WNT-signaling, TGFβ pathway, and NRF2-regulated network. High throughput proteomics studies using mass spectrometry have uncovered many KC-related protein molecules in pathways related with cytoskeleton, cell matrix, TGFβ signaling, and extracellular matrix remodeling, consistent with gene expression profiling. Summary Both transcriptomics and proteomics studies using genome-wide gene/protein expression profiling techniques have identified significant genes/proteins that may contribute to the pathogenesis of keratoconus. These molecules may be involved in functional categories related with extracellular matrix and TGFβ signaling. It is necessary to perform comprehensive gene/protein expression studies using larger sample size, same type of samples, up-to-date platform and bioinformatics tools.
Collapse
|
8
|
Aghamollaei H, Parvin S, Shahriary A. Review of proteomics approach to eye diseases affecting the anterior segment. J Proteomics 2020; 225:103881. [PMID: 32565161 DOI: 10.1016/j.jprot.2020.103881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
Abstract
Visual impairment and blindness is a major health burden worldwide, and major ocular diseases causing visual impairment pertain to the anterior segment of the eye. Anterior segment ocular diseases are common, yet complex entities. Although many treatment options and surgical techniques are available for these ailments, the underlying cause and pathogenesis is still unclear. Finding ways to fundamentally treat these patients and rectify the underlying dysregulations leading to the disease may help cure patients completely without major complications. Proteomics approaches are a novel way to distinguish dysregulated proteins in a variety of biological tissues in a hypothesis-free manner, thus helping to find the responsible pathways leading to a certain disease. The aim of the current study is to review the available knowledge in scientific literature regarding the proteomics studies done on anterior segment eye diseases and suggest potential clinical implications to exploit the results of these studies. SIGNIFICANCE: Anterior segment ocular diseases are responsible for a major proportion of visual impairment and blindness worldwide. Although ophthalmologists have several treatment options that can alleviate or control the progression of these diseases, no definite cure is available for most of them. Moreover, because these diseases are progressive, prompt diagnosis is of utmost important. Proteomics studies enable us to identify and quantify the dysregulated proteins in a biological specimen in a hypothesis-free manner. Understanding the dysregulated protein pathways shines a light on the pathogenesis of the disease. Moreover, these dysregulated proteins may act as biomarkers to help in diagnosis and treatment follow-up. Hence, in this article we sought out to review the available scientific literature regarding the proteomics studies of anterior segment ocular diseases and to identify potential applications of proteomic studies in clinic.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Fodor M, Vitályos G, Losonczy G, Hassan Z, Pásztor D, Gogolák P, Kolozsvári BL. Tear Mediators NGF along with IL-13 Predict Keratoconus Progression. Ocul Immunol Inflamm 2020; 29:1090-1101. [PMID: 32130054 DOI: 10.1080/09273948.2020.1716024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose: To find immunomediator combinations which could sensitively indicate keratoconus progression.Methods: Tear samples of 42 patients with keratoconus were collected at baseline and at the end of a one-year follow-up. The concentrations of 13 mediators were measured by CBA. Based on Pentacam HR examination, eyes were divided into a non-progressive and a progressive group.Results: At the end of the follow-up, significant differences were observed in the release of IFNγ, IL-13, IL-17A, CCL5, MMP-13 and PAI-1 between the two groups. Changes in five Pentacam parameters correlated positively with changes in IFNγ, IL-13, IL-17A, CXCL8, CCL5, TIMP-1 and t-PA. We found that tear level of IL-13 in combination with NGF can predict the progression of keratoconus with 100% specificity and 80% sensitivity.Conclusion: The findings of our longitudinal study may underscore the importance of NGF and IL-13 tear levels in the prediction of keratoconus progression.
Collapse
Affiliation(s)
- Mariann Fodor
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Géza Vitályos
- Department of Orthodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Gergely Losonczy
- Department of Ophthalmology, Zuyderland Hospital, Eyescan BV, Sittard, The Netherlands
| | - Ziad Hassan
- Orbident Refractive Surgery and Medical Center, Debrecen, Hungary
| | - Dorottya Pásztor
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Gogolák
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Bence Lajos Kolozsvári
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Differential epithelial and stromal protein profiles in cone and non-cone regions of keratoconus corneas. Sci Rep 2019; 9:2965. [PMID: 30814630 PMCID: PMC6393548 DOI: 10.1038/s41598-019-39182-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Keratoconus (KC) is an ectatic corneal disease characterized by progressive thinning and irregular astigmatism, and a leading indication for corneal transplantation. KC-associated changes have been demonstrated for the entire cornea, but the pathological thinning and mechanical weakening is usually localized. We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to analyze epithelial and stromal changes between the topographically-abnormal cone and topographically-normal non-cone regions of advanced KC corneas, compared to age-matched normal corneas. Expression of 20 epithelial and 14 stromal proteins was significantly altered (≥2 or ≤0.5-fold) between cone and non-cone in all 4 KC samples. Ingenuity pathway analysis illustrated developmental and metabolic disorders for the altered epithelial proteome with mitochondrion as the significant gene ontology (GO) term. The differential stromal proteome was related to cellular assembly, tissue organization and connective tissue disorders with endoplasmic reticulum protein folding as the significant GO term. Validation of selected protein expression was performed on archived KC, non-KC and normal corneal specimens by immunohistochemistry. This is the first time to show that KC-associated proteome changes were not limited to the topographically-thinner and mechanically-weakened cone but also non-cone region with normal topography, indicating a peripheral involvement in KC development.
Collapse
|
11
|
Tomazic PV, Liesinger L, Pucher B, Thallinger GG, Leitner A, Spoerk S, Gerstenberger C, Lang-Loidolt D, Birner-Gruenberger R. Comparison of tear proteome in allergic rhinoconjunctivitis patients and controls with respect to pollen season. Allergy 2018; 73:1541-1543. [PMID: 29574764 PMCID: PMC6033167 DOI: 10.1111/all.13444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- P. V. Tomazic
- ENT-University Hospital; Medical University of Graz; Graz Austria
| | - L. Liesinger
- Institute of Pathology; Research Unit Functional Proteomics and Metabolic Pathways; Medical University of Graz; Graz Austria
- The Omics Center Graz; BioTechMed-Graz; Graz Austria
| | - B. Pucher
- Institute of Pathology; Research Unit Functional Proteomics and Metabolic Pathways; Medical University of Graz; Graz Austria
- The Omics Center Graz; BioTechMed-Graz; Graz Austria
- Institute of Computational Biotechnology; Graz University of Technology; Graz Austria
| | - G. G. Thallinger
- The Omics Center Graz; BioTechMed-Graz; Graz Austria
- Institute of Computational Biotechnology; Graz University of Technology; Graz Austria
| | - A. Leitner
- ENT-University Hospital; Medical University of Graz; Graz Austria
| | - S. Spoerk
- Institute of Pathology; Research Unit Functional Proteomics and Metabolic Pathways; Medical University of Graz; Graz Austria
- The Omics Center Graz; BioTechMed-Graz; Graz Austria
- Center of Medical Research; Mass Spectrometry Core Facility; Medical University of Graz; Graz Austria
| | - C. Gerstenberger
- ENT-University Hospital; Medical University of Graz; Graz Austria
| | - D. Lang-Loidolt
- ENT-University Hospital; Medical University of Graz; Graz Austria
| | - R. Birner-Gruenberger
- Institute of Pathology; Research Unit Functional Proteomics and Metabolic Pathways; Medical University of Graz; Graz Austria
- The Omics Center Graz; BioTechMed-Graz; Graz Austria
- The Austrian Center of Industrial Biotechnology; Graz Austria
- Gottfried Schatz Research Center; Molecular Biology and Biochemistry; Medical University of Graz; Graz Austria
| |
Collapse
|