1
|
Wolek M, Wollocko B, Li DM, Bansal J, Ghani N, Mackey M, Chaudhary K. Adjusting for Glycemic Control in Assessing the Relationship Between Age-Related Macular Degeneration and Diabetic Retinopathy. Cureus 2024; 16:e71479. [PMID: 39539883 PMCID: PMC11560319 DOI: 10.7759/cureus.71479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Studies regarding the relationship between age-related macular degeneration (AMD) and diabetic retinopathy (DR) conflict: while some support that AMD is protective against DR, others find the opposite. The mechanism by which AMD may protect against DR is unclear. We sought to assess the association between AMD and DR when controlling for glycemic control in patients with diabetes mellitus (DM) type II. Methods We identified 461 unique patients over 55 years old with a diagnosis of DM type II seen in our academic retina clinic in Stony Brook, New York between 12/31/2019 and 12/31/2020. Data were manually extracted and the population was split based on the presence of AMD diagnosis. Multivariate regression analyses were then performed comparing the prevalence of DR between groups while controlling for A1c. Secondary endpoints included demographic differences and smoking status. Results Among the 461 patients, 118 (25.6%) had a diagnosis of AMD. Compared to patients without AMD, patients with AMD were older (69 vs. 66; OR 1.05; p=0.005) and less likely to have DR (37.3% vs. 59.2%; OR 0.35; p<0.001). There was no difference in average A1c between groups. Conclusion This is the first reported study assessing the relationship between AMD and DR while controlling for A1c. In our population, diagnosis of AMD was associated with significantly reduced odds of having DR. As AMD and DR appear to be related even after holding A1c constant, researchers should use caution when using DR as a surrogate for diabetic control in the context of AMD.
Collapse
Affiliation(s)
- Michael Wolek
- Ophthalmology, University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Brian Wollocko
- Ophthalmology, State University of New York Downstate Health Sciences University, New York, USA
| | - Deborah M Li
- Ophthalmology, Stony Brook University, Stony Brook, USA
| | - Jahnvi Bansal
- Anesthesiology, Westchester Medical Center, Valhalla, USA
| | - Nimra Ghani
- Internal Medicine, Stony Brook University, Stony Brook, USA
| | - Michael Mackey
- Anesthesiology, Westchester Medical Center, Valhalla, USA
| | | |
Collapse
|
2
|
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics (Basel) 2024; 14:764. [PMID: 38611677 PMCID: PMC11011935 DOI: 10.3390/diagnostics14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The imagistic evaluation of non-neovascular age-related macular degeneration (AMD) is crucial for diagnosis, monitoring progression, and guiding management of the disease. Dry AMD, characterized primarily by the presence of drusen and retinal pigment epithelium atrophy, requires detailed visualization of the retinal structure to assess its severity and progression. Several imaging modalities are pivotal in the evaluation of non-neovascular AMD, including optical coherence tomography, fundus autofluorescence, or color fundus photography. In the context of emerging therapies for geographic atrophy, like pegcetacoplan, it is critical to establish the baseline status of the disease, monitor the development and expansion of geographic atrophy, and to evaluate the retina's response to potential treatments in clinical trials. The present review, while initially providing a comprehensive description of the pathophysiology involved in AMD, aims to offer an overview of the imaging modalities employed in the evaluation of non-neovascular AMD. Special emphasis is placed on the assessment of progression biomarkers as discerned through optical coherence tomography. As the landscape of AMD treatment continues to evolve, advanced imaging techniques will remain at the forefront, enabling clinicians to offer the most effective and tailored treatments to their patients.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Ana Cristina Ghita
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Larisa Adriana Ilie
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
| | - Aida Geamanu
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| | - Aurelian Mihai Ghita
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| |
Collapse
|
3
|
Jacaruso L. Insights into the nutritional prevention of macular degeneration based on a comparative topic modeling approach. PeerJ Comput Sci 2024; 10:e1940. [PMID: 38660183 PMCID: PMC11042009 DOI: 10.7717/peerj-cs.1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
Topic modeling and text mining are subsets of natural language processing (NLP) with relevance for conducting meta-analysis (MA) and systematic review (SR). For evidence synthesis, the above NLP methods are conventionally used for topic-specific literature searches or extracting values from reports to automate essential phases of SR and MA. Instead, this work proposes a comparative topic modeling approach to analyze reports of contradictory results on the same general research question. Specifically, the objective is to identify topics exhibiting distinct associations with significant results for an outcome of interest by ranking them according to their proportional occurrence in (and consistency of distribution across) reports of significant effects. Macular degeneration (MD) is a disease that affects millions of people annually, causing vision loss. Augmenting evidence synthesis to provide insight into MD prevention is therefore of central interest in this article. The proposed method was tested on broad-scope studies addressing whether supplemental nutritional compounds significantly benefit macular degeneration. Six compounds were identified as having a particular association with reports of significant results for benefiting MD. Four of these were further supported in terms of effectiveness upon conducting a follow-up literature search for validation (omega-3 fatty acids, copper, zeaxanthin, and nitrates). The two not supported by the follow-up literature search (niacin and molybdenum) also had scores in the lowest range under the proposed scoring system. Results therefore suggest that the proposed method's score for a given topic may be a viable proxy for its degree of association with the outcome of interest, and can be helpful in the systematic search for potentially causal relationships. Further, the compounds identified by the proposed method were not simultaneously captured as salient topics by state-of-the-art topic models that leverage document and word embeddings (Top2Vec) and transformer models (BERTopic). These results underpin the proposed method's potential to add specificity in understanding effects from broad-scope reports, elucidate topics of interest for future research, and guide evidence synthesis in a scalable way. All of this is accomplished while yielding valuable and actionable insights into the prevention of MD.
Collapse
Affiliation(s)
- Lucas Jacaruso
- University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
4
|
Khanna S, Shaw L, Hyman MJ, Zhang J, Hariprasad S, Soo J, Flores A, Skondra D. ASSOCIATION OF METFORMIN USE WITH RISK OF NEWLY ONSET NEOVASCULAR AGE-RELATED MACULAR DEGENERATION DEVELOPMENT. Retina 2024; 44:205-213. [PMID: 38259182 DOI: 10.1097/iae.0000000000003968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/03/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE To investigate if metformin use reduces the odds of developing new neovascular AMD (nAMD). METHODS This is a case-control study of 86,930 subjects with new diagnoses of nAMD and 86,918 matched control subjects using the Merative Marketscan Research Databases. Subjects were analyzed using multivariable conditional logistic regression to identify the risks of various exposures on developing nAMD. A subgroup analysis of 22,117 diabetic cases and 21,616 diabetic control subjects was also performed. RESULTS Metformin use was associated with reduced odds ratio of developing nAMD (odds ratio 0.95, 95% confidence interval 0.91-0.98) in full sample and diabetic cohort particularly in patients without any diabetic retinopathy-an effect that persisted after Bonferroni correction. In the diabetic cohort without diabetic retinopathy, reduced odds ratio was observed at 24-month cumulative doses of 1 to 300 g, 301 to 630 g, and 631 to 1,080 g. CONCLUSION Metformin use was associated with reduced odds ratio of nAMD, particularly in patients without diabetic retinopathy. The protective effect was noted for 24-month cumulative doses below 1,080 g. Metformin may be a novel preventive strategy for nAMD.
Collapse
Affiliation(s)
- Saira Khanna
- Department of Ophthalmology & Visual Science, University of Chicago Pritzker School of Medicine, Chicago, Illinois
- The Retina Institute, St. Louis, Missouri; and
| | - Lincoln Shaw
- Department of Ophthalmology & Visual Science, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Max J Hyman
- Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Jason Zhang
- Department of Ophthalmology & Visual Science, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Seenu Hariprasad
- Department of Ophthalmology & Visual Science, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jackie Soo
- Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Andrea Flores
- Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology & Visual Science, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
5
|
Koçyiğit E, Gövez NE, Arslan S, Ağagündüz D. A narrative review on dietary components and patterns and age-related macular degeneration. Nutr Res Rev 2024:1-28. [PMID: 38221852 DOI: 10.1017/s0954422424000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most prevalent eye diseases among the ageing population worldwide. It is a leading cause of blindness in individuals over 55, particularly in industrialised Western countries. The prevalence of AMD increases with age, and genetic factors and environmental influences are believed to contribute to its development. Among the environmental factors, diet plays a significant role in AMD. This review explores the association between dietary components, dietary patterns and AMD. Various nutrients, non-nutrient substances and dietary models that have the potential to counteract oxidative stress and inflammation, which are underlying mechanisms of AMD, are discussed. Consuming fruits, vegetables, fish and seafood, whole grains, olive oil, nuts and low-glycaemic-index foods has been highlighted as beneficial for reducing the risk of AMD. Adhering to the Mediterranean diet, which encompasses these elements, can be recommended as a dietary pattern for AMD. Furthermore, the modulation of the gut microbiota through dietary interventions and probiotics has shown promise in managing AMD.
Collapse
Affiliation(s)
- Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Ordu, Türkiye
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
6
|
Kaufmann GT, Hyman MJ, Gonnah R, Hariprasad S, Skondra D. Association of Metformin and Other Diabetes Medication Use and the Development of New-Onset Dry Age-Related Macular Degeneration: A Case-Control Study. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 37589984 PMCID: PMC10440611 DOI: 10.1167/iovs.64.11.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Purpose To investigate if metformin use is associated with decreased odds of developing new non-neovascular ("dry") age-related macular degeneration (AMD). Methods Case-control study examining 194,135 cases with diagnoses of new-onset AMD between 2008 and 2017 and 193,990 matched controls in the Merative MarketScan Research Databases. The diabetic subgroup included 49,988 cases and 49,460 controls. Multivariable conditional logistic regressions identified the risks of exposures on the development of dry AMD. Main outcome measures were odds ratios (ORs) of developing dry AMD with metformin use. Results In multivariable conditional logistic regression, any metformin use was associated with decreased odds of developing dry AMD (OR = 0.97; 95% confidence interval [CI], 0.95-0.99). This protective effect was noted for cumulative 2-year doses of metformin of 1 to 270 g (OR = 0.93; 95% CI, 0.90-0.97) and 271 to 600 g (OR = 0.92; 95% CI, 0.89-0.96). In a diabetic subgroup, metformin use below 601 g per 2 years decreased the odds of developing dry AMD (1-270 g: OR = 0.95; 95% CI, 0.91-0.99; 271-600 g: OR = 0.92; 95% CI, 0.89-0.96). Unlike in diabetic patients with diabetic retinopathy, diabetic patients without diabetic retinopathy had decreased odds of developing dry AMD with any metformin use (OR = 0.97; 95% CI, 0.94-0.998) and cumulative two-year doses of 1 to 270 g (OR 0.96; 95% CI, 0.91-0.998) and 271 to 600 g (OR = 0.92; 95% CI, 0.88-0.96). Conclusions Metformin use was associated with decreased odds of developing dry AMD. The protective effect was observed for cumulative 2-year doses below 601 g. In diabetics, this association persisted, specifically in those without diabetic retinopathy. Therefore, metformin may be a strategy to prevent development of dry AMD.
Collapse
Affiliation(s)
- Gabriel T. Kaufmann
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Max J. Hyman
- The Center for Health and the Social Sciences, The University of Chicago, Chicago, Illinois, United States
| | - Reem Gonnah
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Seenu Hariprasad
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
7
|
Cornebise C, Perus M, Hermetet F, Valls-Fonayet J, Richard T, Aires V, Delmas D. Red Wine Extract Prevents Oxidative Stress and Inflammation in ARPE-19 Retinal Cells. Cells 2023; 12:1408. [PMID: 37408242 DOI: 10.3390/cells12101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the most commonly occurring ocular diseases worldwide. This degenerative condition affects the retina and leads to the loss of central vision. The current treatments are focused on the late stage of the disease, but recent studies have highlighted the importance and benefits of preventive treatments and how good dietary habits can reduce the risk of progression to an advanced form of the disease. In this context, we studied whether resveratrol (RSV) or a polyphenolic cocktail, red wine extract (RWE), are able to prevent the initiating events of AMD (i.e., oxidative stress and inflammation) in human ARPE-19 retinal pigment epithelial (RPE) cells and macrophages. This study highlights that RWE and RSV can prevent hydrogen peroxide (H2O2) or 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress and can subsequently prevent DNA damage via the inhibition of the ATM (ataxia telangiectasia-mutated)/Chk2 (checkpoint kinase 2) or Chk1 signaling pathways, respectively. Moreover, ELISA assays show that RWE and RSV can prevent the secretion of proinflammatory cytokines in RPE cells and in human macrophages. Interestingly, RWE exhibits a greater protective impact compared to RSV alone, even though RSV was more concentrated when used alone than in the red wine extract. Our results suggest that RWE and RSV may have potential interest as preventive nutritional supplementations against AMD.
Collapse
Affiliation(s)
- Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Maude Perus
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Josep Valls-Fonayet
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Tristan Richard
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
8
|
Gong Y, Tomita Y, Edin ML, Ren A, Ko M, Yang J, Bull E, Zeldin DC, Hellström A, Fu Z, Smith LEH. Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice. Metabolism 2022; 134:155266. [PMID: 35868524 PMCID: PMC9535696 DOI: 10.1016/j.metabol.2022.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minji Ko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Bull
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Garcia-Garcia J, Usategui-Martin R, Sanabria MR, Fernandez-Perez E, Telleria JJ, Coco-Martin RM. Pathophysiology of Age-Related Macular Degeneration: Implications for Treatment. Ophthalmic Res 2022; 65:615-636. [PMID: 35613547 DOI: 10.1159/000524942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial, progressive retinal disease that affects millions of people worldwide and has become the leading cause of visual impairment in developed countries. The disease etiopathogenesis is not understood fully, although many triggers and processes that lead to dysfunction and degeneration of the retinal pigment epithelium (RPE) have already been identified. Thus, the lack of cellular control of oxidative stress, altered proteostasis, dysfunction of lipid homeostasis, and mitochondrial dysfunction form an internal feedback loop that causes the RPE to fail and allows accumulation of abnormal misfolded proteins and abnormal lipids that will form drusen. An inadequate antioxidant response, deficits in autophagy mechanisms, and dysregulation of the extracellular matrix (ECM) help to increase the deposition of abnormal drusen material over time. The drusen then act as inflammatory centers that trigger chronic inflammation of the subretinal space in which microglia and recruited macrophages are also involved, and where the complement system is a key component. Choriocapillaris degeneration and nutritional influences are also classic elements recognized in the AMD pathophysiology. The genetic component of the disease is embodied in the recognition of the described risk or protective polymorphisms of some complement and ECM related genes (mainly CFH and ARMS2/HTRA1). Thus, carriers of the risk haplotype at ARMS2/HTRA1 have a higher risk of developing late AMD at a younger age. Finally, gut microbiota and epigenetics may play a role in modulating the progression to advanced AMD with the presence of local inflammatory conditions. Because of multiple implicated processes, different complex combinations of treatments will probably be the best option to obtain the best visual results; they in turn will differ depending on the type and spectrum of disease affecting individual patients or the disease stage in each patient at a specific moment. This will undoubtedly lead to personalized medicine for control and hopefully find a future cure. This necessitates the continued unraveling of all the processes involved in the pathogenesis of AMD that must be understood to devise the combinations of treatments for different concurrent or subsequent problems.
Collapse
Affiliation(s)
- Julián Garcia-Garcia
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - Ricardo Usategui-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
- RICORS of Inflammation and Immunopathology of Organs and Systems Network, ISCIII, Madrid, Spain
- Dpto. de Biología Celular, Histología y Farmacología, University of Valladolid, Valladolid, Spain
| | - Maria Rosa Sanabria
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
- RICORS of Inflammation and Immunopathology of Organs and Systems Network, ISCIII, Madrid, Spain
- Ophthalmology Department, Palencia University Hospital Complex, Palencia, Spain
| | - Esther Fernandez-Perez
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - Juan Jose Telleria
- Institute of Biology and Molecular Genetics (IBGM) University of Valladolid, Valladolid, Spain
- Dpto. de Biología Celular, Histología y Farmacología, University of Valladolid, Valladolid, Spain
| | - Rosa M Coco-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
- RICORS of Inflammation and Immunopathology of Organs and Systems Network, ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Allegrini D, Raimondi R, Borgia A, Sorrentino T, Montesano G, Tsoutsanis P, Cancian G, Verma Y, De Rosa FP, Romano MR. Curcumin in Retinal Diseases: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23073557. [PMID: 35408920 PMCID: PMC8998602 DOI: 10.3390/ijms23073557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recent evidence in basic science is leading to a growing interest in the possible role of curcumin in treating retinal diseases. Curcumin has been demonstrated to be able to modulate gene transcription and reduce ganglion cell apoptosis, downgrade VEGF, modulate glucose levels and decrease vascular dysfunction. So far, the use of curcumin has been limited by poor bioavailability; to overcome this issue, different types of carriers have been used. Multiple recent studies disclosed the efficacy of using curcumin in treating different retinal conditions. The aim of this review is to comprehensively review and discuss the role of curcumin in retinal diseases from bench to bedside.
Collapse
Affiliation(s)
- Davide Allegrini
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
- Correspondence:
| | - Alfredo Borgia
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Giovanni Montesano
- Optometry and Visual Sciences Department, University of London, London WC1E 7HU, UK;
| | - Panos Tsoutsanis
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
| | - Giuseppe Cancian
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Yash Verma
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Mario R. Romano
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| |
Collapse
|
11
|
Mauschitz MM, Finger RP. Age-Related Macular Degeneration and Cardiovascular Diseases: Revisiting the Common Soil Theory. Asia Pac J Ophthalmol (Phila) 2022; 11:94-99. [PMID: 35213420 DOI: 10.1097/apo.0000000000000496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Age-related macular degeneration (AMD), a complex disease associated with aging, remains one of the leading causes of visual loss in high-income countries and its prevalence is expected to increase over the next decades. Polypoidal choroidal vasculopathy has been considered a variant of neovascular AMD and is highly prevalent in Asian populations. Similarly, cardiovascular disease (CVD)-another complex disease associated with aging-is a leading cause of morbidity and mortality in high-income countries and its prevalence is also expected to increase due to population aging. Previous studies reported an increased risk for CVD in AMD patients, indicating an underlying "common soil." Reviewing the current literature, consistent evidence for common risk factors and mutual comorbidity was identified for both diseases. Cardiovascular risk factors include smoking, diet, and low levels of physical activity, which also play a role in AMD pathogenesis. Several studies demonstrated AMD patients to be at higher risk for CVD compared to the general older population. The complexity of both diseases, however, complicates research on their relation, and thus studies ought to be interpreted with caution. Herein we present an overview of selected studies and their main "take-home messages" on this topic, and hypothesize on the patho-etiologic "common ground" of these 2 diseases.
Collapse
|
12
|
Exudative versus Nonexudative Age-Related Macular Degeneration: Physiopathology and Treatment Options. Int J Mol Sci 2022; 23:ijms23052592. [PMID: 35269743 PMCID: PMC8910030 DOI: 10.3390/ijms23052592] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease typically associated with the aging and can be classified into two types—namely, the exudative and the nonexudative AMD. Currently available treatments for exudative AMD use intravitreal injections, which are associated with high risk of infection that can lead to endophthalmitis, while no successful treatments yet exist for the nonexudative form of AMD. In addition to the pharmacologic therapies administered by intravitreal injection already approved by the Food and Drug Administration (FDA) in exudative AMD, there are some laser treatments approved that can be used in combination with the pharmacological therapies. In this review, we discuss the latest developments of treatment options for AMD. Relevant literature available from 1993 was used, which included original articles and reviews available in PubMed database and also information collected from Clinical Trials Gov website using “age-related macular degeneration” and “antiangiogenic therapies” as keywords. The clinical trials search was limited to ongoing trials from 2015 to date.
Collapse
|
13
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
14
|
The Vertical and Horizontal Pathways in the Monkey Retina Are Modulated by Typical and Atypical Cannabinoid Receptors. Cells 2021; 10:cells10113160. [PMID: 34831383 PMCID: PMC8622302 DOI: 10.3390/cells10113160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid (eCB) system has been found in all visual parts of the central ner-vous system and plays a role in the processing of visual information in many species, including monkeys and humans. Using anatomical methods, cannabinoid receptors are present in the monkey retina, particularly in the vertical glutamatergic pathway, and also in the horizontal GABAergic pathway. Modulating the eCB system regulates normal retinal function as demonstrated by electrophysiological recordings. The characterization of the expression patterns of all types of cannabinoid receptors in the retina is progressing, and further research is needed to elucidate their exact role in processing visual information. Typical cannabinoid receptors include G-protein coupled receptor CB1R and CB2R, and atypical cannabinoid receptors include the G-protein coupled receptor 55 (GPR55) and the ion channel transient receptor potential vanilloid 1 (TRPV1). This review focuses on the expression and localization studies carried out in monkeys, but some data on other animal species and humans will also be reported. Furthermore, the role of the endogenous cannabinoid receptors in retinal function will also be presented using intraocular injections of known modulators (agonists and antagonists) on electroretinographic patterns in monkeys. The effects of the natural bioactive lipid lysophosphatidylglucoside and synthetic FAAH inhibitor URB597 on retinal function, will also be described. Finally, the potential of typical and atypical cannabinoid receptor acti-vity regulation in retinal diseases, such as age-related macular degeneration, diabetic retinopathy, glaucoma, and retinitis pigmentosa will be briefly explored.
Collapse
|
15
|
Muste JC, Russell MW, Singh RP. Photobiomodulation Therapy for Age-Related Macular Degeneration and Diabetic Retinopathy: A Review. Clin Ophthalmol 2021; 15:3709-3720. [PMID: 34511875 PMCID: PMC8421781 DOI: 10.2147/opth.s272327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose Photobiomodulation therapy (PBT) has emerged as a possible treatment for age-related macular degeneration (AMD) and diabetic retinopathy (DR). This review seeks to summarize the application of PBT in AMD and DR. Methods The National Clinical Trial (NCT) database and PubMed were queried using a literature search strategy and reviewed by the authors. Results Fourteen studies examining the application of PBT for AMD and nine studies examining the application of PBT for diabetic macular edema (DME) were extracted from 60 candidate publications. Discussion Despite notable methodological differences between studies, PBT has been reported to treat certain DR and AMD patients. DR patients with center involving DME and VA ≥ 20/25 have demonstrated response to treatment. AMD patients at Age-Related Eye Disease Study Stages 2–4 with VA ≥20/200 have also shown response to treatment. Results of major clinical trials are pending. Conclusion PBT remains an emergent therapy with possible applications in DR and AMD. Further, high powered studies monitored by a neutral party with standard devices, treatment delivery and treatment timing are needed.
Collapse
Affiliation(s)
- Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Di Carlo E, Augustin AJ. Prevention of the Onset of Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10153297. [PMID: 34362080 PMCID: PMC8348883 DOI: 10.3390/jcm10153297] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) represents the leading cause of irreversible blindness in elderly people, mostly after the age of 65. The progressive deterioration of visual function in patients affected by AMD has a significant impact on quality of life and has also high social costs. The current therapeutic options are only partially able to slow down the natural course of the disease, without being capable of stopping its progression. Therefore, better understanding of the possibilities to prevent the onset of the disease is needed. In this regard, a central role is played by the identification of risk factors, which might participate to the development of the disease. Among these, the most researched are dietary risk factors, lifestyle, and light exposure. Many studies showed that a higher dietary intake of nutrients, such as lutein, zeaxanthin, beta carotene, omega-3 fatty acids and zinc, reduced the risk of early AMD. Regarding lifestyle habits, the association between smoking and AMD is currently accepted. Finally, retinal damage caused by ultraviolet rays and blue light is also worthy of attention. The scope of this review is to summarize the present knowledge focusing on the measures to adopt in order to prevent the onset of AMD.
Collapse
|
17
|
Muste JC, Kalur A, Iyer A, Valentim CCS, Singh RP. Photobiomodulation therapy in age-related macular degeneration. Curr Opin Ophthalmol 2021; 32:225-232. [PMID: 33606405 DOI: 10.1097/icu.0000000000000742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the available data supporting the use of photobiomodulation therapy (PBT) in the treatment of age-related macular degeneration (AMD). RECENT FINDINGS PBT might be used in treating nonexudative AMD. Limited evidence suggests that exudative AMD may also benefit from PBT. SUMMARY The optimal device would deliver doses of 60 J/cm2 or more with a multiwavelength composition through the pupil over short treatment intervals. Safe upper limits have not been established. More studies are needed to evaluate the efficacy of PBT in treating exudative and nonexudative AMD.
Collapse
Affiliation(s)
- Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic
| | - Aneesha Kalur
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic
| | - Amogh Iyer
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic
| | | | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic
- Cole Eye Institute - Retina Service, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Wang P, Chin EK, Almeida D. Antioxidants for the Treatment of Retinal Disease: Summary of Recent Evidence. Clin Ophthalmol 2021; 15:1621-1628. [PMID: 33907376 PMCID: PMC8064715 DOI: 10.2147/opth.s307009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal tissue is prone to oxidant burden and oxidative stress secondary to the generation of reactive oxygen species from high metabolic demand. The formation of reactive oxygen species occurs primarily from the mitochondrial respiratory chain as well as several enzymatic and oxidation reactions that occur in the neurosensory retina and retinal pigment epithelium. This oxidative stress has been implicated in the pathogenesis of several retinal diseases and the role of antioxidants as a therapeutic treatment shows promise in slowing the progression of certain diseases. The aim of this narrative review is to describe the mechanisms of retinal oxidative stress and summarize the current available evidence for antioxidants as a treatment for vitreoretinal disorders.
Collapse
Affiliation(s)
- Patrick Wang
- School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Eric K Chin
- Retina Consultants of Southern California, Redlands, CA, USA
| | | |
Collapse
|
19
|
Matías-Pérez D, García-Montalvo IA. Fatty Acids and Lipid Derivatives Protecting Photooxidative Attack in Age-related Macular Degeneration. J Oleo Sci 2021; 70:453-458. [PMID: 33692241 DOI: 10.5650/jos.ess20314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective is the systematic review of studies published in Scielo, Redalyc, Dialnet, Web of Science, Scopus and Pubmed, related to the inclusion of fatty acids and lipid derivatives in the daily diet to prevent or delay the appearance or progression of Age-Related Macular Degeneration (AMD). The analysis of the research results consulted shows that AMD is one of the most frequent causes of blindness in subjects over 55 years of age. AMD is characterized by decreased vision, metamorphopsia, macropsies, micropsies, and central scotoma. Disease that must be diagnosed early as it can lead to irreversible blindness. Among the components of the diet that in numerous epidemiological studies have shown an association in the treatment of AMD and that are reviewed in this work are fatty acids, vitamins and carotenoids. There is ample evidence that fatty acids and lipid derivatives can be included in the diet plans of subjects with AMD.
Collapse
Affiliation(s)
- Diana Matías-Pérez
- Division of Graduate Studies and Research, National Technology of Mexico/Technological Institute of Oaxaca
| | | |
Collapse
|
20
|
Implications of NAD + Metabolism in the Aging Retina and Retinal Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2692794. [PMID: 32454935 PMCID: PMC7238357 DOI: 10.1155/2020/2692794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision.
Collapse
|