1
|
Golabi B, Razmaray H, Seyedi-Sahebari S, Bandehagh H, Hakimzadeh Z, Khosroshahi A, Moghaddamziabari S, Aghaei N, Sanaie S, Talebi M, Naseri A. Sleep and cognitive outcomes in multiple sclerosis; a systematic review. BMC Psychiatry 2024; 24:638. [PMID: 39342299 PMCID: PMC11438219 DOI: 10.1186/s12888-024-06103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a disabling disease of the central nervous system. People living with MS often have co-existing sleep disorders and cognitive dysfunction. The objective of this study was to scrutinize the relationship between cognitive outcomes and sleep conditions in MS. METHODS This study followed the Joanna Briggs Institute's (JBI) and PRISMA guidelines. PubMed, Scopus, Embase, and Web of Science databases were searched and original studies delineating the relationship between sleep status and cognitive findings in MS patients were included. The risk of bias was assessed using the JBI critical appraisal tools. RESULTS In the final review, out of 1635 screened records, 35 studies with 5321 participants were included. Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and polysomnography were the most common assessment tools for evaluation of sleep condition, and cognitive evaluations were conducted using the tests including Paced Auditory Serial Addition Test (PASAT), California Verbal Learning Test (CVLT), Symbol Digit Modalities Test (SDMT) and Brief Visuospatial Memory Test (BVMT). Assessing the quality of studies showed no significant bias in most of the included articles. A link between sleep condition and cognitive abilities was suggested in the literature, especially with objective measurement of sleep condition; however, current evidence did not support a substantial association between self-reported sleep quality and processing speed and working memory in patients with MS. DISCUSSION Evidence proposes sleep is an independent factor associated with cognitive outcomes in MS. Given the limitations of the evidence such as the lack of well-designed prospective studies, these findings need to be interpreted with caution.
Collapse
Affiliation(s)
- Behnam Golabi
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, 5166/15731, Iran
| | - Hadis Razmaray
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, 5166/15731, Iran
| | - Sepideh Seyedi-Sahebari
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, 5166/15731, Iran
| | - Heliya Bandehagh
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, 5166/15731, Iran
| | - Zahra Hakimzadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Ailin Khosroshahi
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, 5166/15731, Iran
| | | | - Negar Aghaei
- Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, 5166/15731, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
2
|
Wang XT, Yu H, Liu FT, Zhang C, Ma YH, Wang J, Dong Q, Tan L, Wang H, Yu JT. Associations of sleep disorders with cerebrospinal fluid α-synuclein in prodromal and early Parkinson's disease. J Neurol 2021; 269:2469-2478. [PMID: 34605986 DOI: 10.1007/s00415-021-10812-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Our aim is to investigate the associations of sleep disorders with cerebrospinal fluid (CSF) α-synuclein (α-syn) in healthy controls (HCs), and patients with prodromal and early Parkinson's disease (PD). METHODS We included a total of 575 individuals, consisting of 360 PD individuals, 46 prodromal PD individuals, and 169 HCs. Multiple linear regression models and linear mixed-effects models were used to investigate the associations of sleep disorders with baseline and longitudinal CSF α-syn. Associations between the change rates of sleep disorders and CSF α-syn were further investigated via multiple linear regression models. RESULTS In PD, probable Rapid-eye-movement sleep Behavior Disorder (pRBD) (β = - 0.1199; P = 0.0444) and RBD sub-items, such as aggressive dreams (β = - 0.1652; P = 0.0072) and hurting bed partner (β = - 0.2468; P = 0.0010), contributed to lower CSF α-syn. The association between aggressive dreams and lower CSF α-syn further survived Bonferroni correction (P < 0.0036). In prodromal PD, dream-enacting (a specific RBD behavior) was significantly associated with decreased CSF α-syn during the follow-up (β = - 0.0124; P = 0.0237). HCs with daytime sleepiness when inactive-sitting in public places (β = - 0.0033; P = 0.0135) showed decreased CSF α-syn. Furthermore, increased possibilities of daytime sleepiness when sitting and reading contributed to a greater decrease of CSF α-syn in HCs (β = - 196.8779; P = 0.0433). CONCLUSIONS Sleep disorders were associated with decreased CSF α-syn. Sleep management may be important for disease monitoring and preventing the progression of α-syn pathology.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Huan Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Jian Wang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Han Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
3
|
Wang Q, Cao F, Wu Y. Orexinergic System in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:713201. [PMID: 34483883 PMCID: PMC8416170 DOI: 10.3389/fnagi.2021.713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023] Open
Abstract
Orexinergic system consisting of orexins and orexin receptors plays an essential role in regulating sleep–wake states, whereas sleep disruption is a common symptom of a number of neurodegenerative diseases. Emerging evidence reveals that the orexinergic system is disturbed in various neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis (MS), whereas the dysregulation of orexins and/or orexin receptors contributes to the pathogenesis of these diseases. In this review, we summarized advanced knowledge of the orexinergic system and its role in sleep, and reviewed the dysregulation of the orexinergic system and its role in the pathogenesis of AD, PD, HD, and MS. Moreover, the therapeutic potential of targeting the orexinergic system for the treatment of these diseases was discussed.
Collapse
Affiliation(s)
- Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fei Cao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
4
|
Chronobiotic effect of melatonin in experimental optic neuritis. Neuropharmacology 2020; 182:108401. [PMID: 33197466 DOI: 10.1016/j.neuropharm.2020.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Optic neuritis (ON) is an inflammatory condition of the optic nerve, which leads to retinal ganglion cell (RGC) loss. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system (NIFVS) functions such as pupillary light reflex (PLR) and circadian rhythms. Melatonin is a chronobiotic agent able to regulate the circadian system. We analyzed the effect of ON on the NIFVS, and the effect of melatonin on the NIFVS alterations induced by ON. For this purpose, optic nerves from male Wistar rats received vehicle or bacterial lipopolysaccharide (LPS), and one group of animals received a subcutaneous pellet of melatonin or a sham procedure. The NIFVS was analyzed in terms of: i) blue light-evoked PLR, ii) the communication between the retina and the suprachiasmatic nuclei (by anterograde transport, and ex vivo magnetic resonance images), iii) locomotor activity rhythm, and iv) Brn3a(+) and melanopsin(+) RGC number (by immunohistochemistry). Experimental ON significantly decreased the blue light-evoked PLR, induced a misconnection between the retina and the suprachiasmatic nuclei, decreased Brn3a(+) RGCs, but not melanopsin(+) RGC number. A bilateral injection of LPS significantly increased the light (but not dark) phase locomotor activity, rhythm periodicity, and time of offset activity. Melatonin prevented the decrease in blue light-evoked PLR, and locomotor activity rhythm alterations induced by ON. These results support that ON provoked alterations of the circadian physiology, and that melatonin could restore the circadian system misalignment.
Collapse
|
5
|
Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019; 20:ijms20215500. [PMID: 31694154 PMCID: PMC6862663 DOI: 10.3390/ijms20215500] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.
Collapse
|