1
|
Mitra S, Garg P, Murthy S, Jakati S, Dave VP, Seba E. Antifungal resistance, clinical outcome and clinico-microbiological correlation in ocular infections due to common melanized fungi Curvularia lunata and Lasiodiplodia theobromae in South India. J Med Microbiol 2024; 73. [PMID: 39508732 DOI: 10.1099/jmm.0.001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Aim. Melanized fungi were rarely studied for their antifungal resistance (AFR) or clinical outcome, despite rising incidence of melanized fungal ocular infections and AFR in general. We report the antifungal resistance patterns, clinical outcome and clinico-microbiological correlation in two commonly isolated melanized fungi from ocular infections, Curvularia lunata and Lasiodiplodia theobromae, at a tertiary eyecare centre in South India.Gap statement. Despite melanized fungi accounting for a significant proportion of ocular fungal infections in the Indian subcontinent, and despite there being a limited selection of effective antifungal agents available for these infections, the existing data and studies on these issues remain sparse. Therefore, this study aimed to investigate the prevalence of antifungal resistance in two of the most common melanized fungal pathogens in ocular infections, Curvularia lunata and Lasiodiplodia theobromae and correlate it with the treatment given and the clinical outcome in patients.Methodology. Electronic medical records provided the clinical data. Standard broth microdilution was performed for antifungal susceptibility testing (AFST) in 30 isolates (17 C. lunata and 13 L. theobromae) for amphotericin B and natamycin (polyenes): voriconazole, ketoconazole, posaconazole, itraconazole and fluconazole (azoles) and caspofungin (echinocandin). Multidrug resistance (MDR) was defined as resistance to more than or equal to two classes of antifungals. DNA sequencing was performed for the isolates for species confirmation. The multivariate analysis was done for determining poor prognostic factors.Results. AFST showed highest susceptibility of study isolates for voriconazole (83.3% isolates), followed by natamycin (80%), fluconazole (80%), itraconazole (76.7%), ketoconazole (70%), posaconazole (66.7%), caspofungin (66.7%) and lastly amphotericin B (63.3%). All patients empirically received topical natamycin; additional oral ketoconazole/intraocular voriconazole was administered in select few. MDR was strongly associated with poor clinical outcome (multivariate analysis: P = 0.03, odds ratio = 7.8). All patients had microbial keratitis, one progressed to endophthalmitis. Additionally, therapeutic penetrating keratoplasty was required in 40% of cases. Globe salvage was possible in 80% patients, though good visual outcome was seen in only half of them. Both, anatomical and visual outcomes, were poor in 20% of patients. DNA sequencing showed C. lunata as the highest study species.Conclusion. C. lunata and L. theobromae showed varying in vitro antifungal susceptibility and clinical outcome in ocular infections. Voriconazole had significantly higher activity, while amphotericin B had lower activity in vitro for these melanized fungi. MDR isolates showed poorer clinical outcome.
Collapse
Affiliation(s)
- Sanchita Mitra
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Prashant Garg
- Shantilal Shanghvi Cornea Institute, Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Somasheila Murthy
- Shantilal Shanghvi Cornea Institute, Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Vivek Pravin Dave
- Anant Bajaj Retina Institute, Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Esther Seba
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| |
Collapse
|
2
|
Dwibedy SK, Padhy I, Panda AK, Mohapatra SS. Prevalence of polymyxin-resistant bacterial strains in India: a systematic review and meta-analysis. J Antimicrob Chemother 2024; 79:1762-1774. [PMID: 38717452 DOI: 10.1093/jac/dkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Polymyxins, the cationic lipopeptide antibiotics, are the last line of therapeutics against the MDR Gram-negative bacterial (GNB) pathogens. Unfortunately, the rising cases of polymyxin-resistant strains from across the globe have adversely impacted their utility. While the molecular mechanisms responsible for developing polymyxin resistance (PolR) are largely understood, the prevalence of PolR strains in India has not been investigated systematically. The current study was undertaken to primarily determine the prevalence of PolR strains in India. Moreover, the extent of the spread of mobile colistin resistance (mcr) genes among the GNB strains in India was also determined. METHOD A systematic search for articles using the relevant inclusion and exclusion criteria was performed in the applicable databases for the period January 2015 to December 2023. The included 41 studies were subjected to a meta-analysis using the Comprehensive Meta-Analysis software (V4.0). Publication biases were assessed using funnel plots and Egger's regression analysis. RESULT Considering a total of 41 studies including 24 589 bacterial isolates the present meta-analysis found the rate of PolR bacteria in India to be at 15.0% (95% CI: 11.2 to 19.8). Among the Indian States, Tamil Nadu topped with the highest prevalence of PolR at 28.3%. Investigating the contribution of the mcr genes, it was observed that among the PolR strains, 8.4% (95% CI: 4.8 to 14.3) were mcr positive. CONCLUSION The study determined the prevalence of PolR strains in India at 15.0%, which is higher than that of the global average at 10%. The study also determined that 8.4% of the PolR strains carried the mcr genes. The mcr-positive strains reported from India could be an underestimation of the actual numbers due to the non-inclusion of mcr screening in many previous studies. This study provides insight into the state of the PolR situation in India, which may be useful to develop a monitoring strategy to contain the spread of such strains and preserve the efficacy of the polymyxins.
Collapse
Affiliation(s)
- Sambit K Dwibedy
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Department of Zoology, SBRG Women's College, Berhampur 760001, Odisha, India
| | - Indira Padhy
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Aditya K Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| |
Collapse
|
3
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
4
|
Sarr H, Niang AA, Diop A, Mediannikov O, Zerrouki H, Diene SM, Lo S, Dia ML, Sow AI, Fenollar F, Rolain JM, Hadjadj L. The Emergence of Carbapenem- and Colistin-Resistant Enterobacteria in Senegal. Pathogens 2023; 12:974. [PMID: 37623934 PMCID: PMC10459028 DOI: 10.3390/pathogens12080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic resistance is a public health problem. The emergence of carbapenemase-producing Enterobacterales (CPE) infections is a concern, particularly in Senegal. (1) Methods: Between January 2019 and July 2022, 240 isolates of enterobacteria resistant to third-generation cephalosporins and imipenem from biological samples from Fann Hospital (Dakar) and Hôpital Paix (Ziguinchor) were selected. The isolates were identified by MALDI-TOF mass spectrometry, and susceptibility tests were performed by the disk diffusion method. Antibiotic-resistance genes for class A beta-lactamases, carbapenemases, and plasmid resistance to colistin resistance (mcr-1-8) were screened by RT-PCR. (2) Results: The 240 enterobacteria were composed of: Escherichia coli (60.83%), Klebsiella pneumoniae (21.67%), Enterobacter cloacae (13.75%), Citrobacter freundii (2.08%), Serratia marcescens (0.83%), Klebsiella aerogenes (0.42%), and Proteus mirabilis (0.42%). Class A beta-lactamase genes were found in 229 isolates (70.41% blaTEM, 37.5% blaSHV, 83.75% blaCTX-A, and 0.42% blaCTX-B). The carbapenemase genes blaOXA-48 and blaNDM were found in 25 isolates, including 14 isolates with blaOXA-48, 13 isolates with blaNDM, and 2 isolates with both genes simultaneously. The mcr-8 gene was found in one isolate of E. cloacae. (3) Conclusions: The epidemiology of antibiotic-resistance genes in enterobacteria in Senegal shows the emergence of CPEs. This phenomenon is worrying, and rigorous surveillance is necessary to avoid further spread.
Collapse
Affiliation(s)
- Habibou Sarr
- UFR des Sciences de la Santé, Université Assane Seck de Ziguinchor, Ziguinchor BP 523, Senegal;
- Unité de Bactériologie, Hôpital de la Paix de Ziguinchor, Ziguinchor BP 523, Senegal
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Aissatou Ahmet Niang
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Amadou Diop
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Oleg Mediannikov
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Hanane Zerrouki
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Seydina M. Diene
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Seynabou Lo
- UFR des Sciences de la Santé, Université Gaston Berger, Saint Louis BP 234, Senegal;
| | - Mouhamadou Lamine Dia
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Ahmad Iyane Sow
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Florence Fenollar
- IHU Méditerranée Infection, 13005 Marseille, France;
- VITROME, IRD, APHM, SSA, Aix Marseille Université, 13005 Marseille, France
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Linda Hadjadj
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
5
|
Ewers C, Göpel L, Prenger-Berninghoff E, Semmler T, Kerner K, Bauerfeind R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010-2020) and genomic characterization of mcr-2-positive E. coli. Front Microbiol 2022; 13:1076315. [PMID: 36569100 PMCID: PMC9780603 DOI: 10.3389/fmicb.2022.1076315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The global emergence of plasmid-mediated colistin resistance is threatening the efficacy of colistin as one of the last treatment options against multi-drug resistant Gram-negative bacteria. To date, ten mcr-genes (mcr-1 to mcr-10) were reported. While mcr-1 has disseminated globally, the occurrence of mcr-2 was reported scarcely. Methods and results We determined the occurrence of mcr-1 and mcr-2 genes among Escherichia coli isolates from swine and performed detailed genomic characterization of mcr-2-positive strains. In the years 2010-2017, 7,614 porcine E. coli isolates were obtained from fecal swine samples in Europe and isolates carrying at least one of the virulence associated genes predicting Shiga toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) or enteropathogenic E. coli (EPEC) were stored. 793 (10.4%) of these isolates carried the mcr-1 gene. Of 1,477 additional E. coli isolates obtained from sheep blood agar containing 4 mg/L colistin between 2018 and 2020, 36 (2.4%) isolates were mcr-1-positive. In contrast to mcr-1, the mcr-2 gene occurred at a very low frequency (0.13%) among the overall 9,091 isolates. Most mcr-2-positive isolates originated from Belgium (n = 9), one from Spain and two from Germany. They were obtained from six different farms and revealed multilocus sequence types ST10, ST29, ST93, ST100, ST3057 and ST5786. While the originally described mcr-2.1 was predominant, we also detected a new mcr-2 variant in two isolates from Belgium, which was termed mcr-2.8. MCR-2 isolates were mostly classified as ETEC or ETEC-like, while one isolate from Spain represented an atypical enteropathogenic E. coli (aEPEC; eae+). The ST29-aEPEC isolate carried mcr-2 on the chromosome. Another eight isolates carried their mcr-2 gene on IncX4 plasmids that resembled the pKP37-BE MCR-2 plasmid originally described in Belgium in 2015. Three ST100 E. coli isolates from a single farm in Belgium carried the mcr-2.1 gene on a 47-kb self-transmissible IncP type plasmid of a new IncP-1 clade. Discussion This is the first report of mcr-2 genes in E. coli isolates from Germany. The detection of a new mcr-2 allele and a novel plasmid backbone suggests the presence of so far undetected mcr-2 variants and mobilizable vehicles.
Collapse
Affiliation(s)
- Christa Ewers
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany,*Correspondence: Christa Ewers,
| | - Lisa Göpel
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katharina Kerner
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Wang Z, Fan X, Wang S, Li S, Gao Y, Wang H, Li H. Emergence of Colistin-Resistant Acinetobacter junii in China. Antibiotics (Basel) 2022; 11:antibiotics11121693. [PMID: 36551350 PMCID: PMC9774529 DOI: 10.3390/antibiotics11121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing number of multidrug-resistant Gram-negative bacteria presents a serious threat to global health. However, colistin-resistant Acinetobacter junii has rarely been reported. We identified a colistin-resistant A. junii clinical isolate, AJ6079, in blood. The colony of AJ6079 presented a dry phenotype, and it was difficult to form a bacterial suspension, whilst transmission electron microscopy revealed that AJ6079 possessed a thick outer membrane. The phenotypic and genomic comparisons were conducted with one colistin-susceptible A. junii, which had the same antibiotic susceptibility profile except for colistin, and had the same KL25 capsule biosynthesis locus. The AJ6079 exhibited a slower growth rate, indicating that colistin-resistant A. junii possesses a higher fitness cost. The genome of AJ6079 had a G+C content of 38.7% and contained one 3,362,966 bp circular chromosome with no plasmid or mobile colistin resistance (mcr) gene. Comparative genomic analysis revealed that the AJ6079 contained several previously unreported point mutations in colistin-resistance-related genes involving amino acid substitutions in PmrB (N5K, G147C), LpxA (I107F, H131Y), and LpxD (F20I, K263R), which might be correlated with colistin resistance in A. junii. Further research is needed for verification as the genetic background was not exactly the same between the two isolates.
Collapse
|
7
|
Yang X, Shu R, Hou L, Ren P, Lu X, Huang Z, Zhong Z, Wang H. mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics (Basel) 2022; 11:antibiotics11070875. [PMID: 35884129 PMCID: PMC9311533 DOI: 10.3390/antibiotics11070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Colistin is regarded as an antibiotic of last resort against multidrug-resistant Gram-negative bacteria, including Klebsiella pneumoniae and Escherichia coli. Colistin resistance is acquired by microorganisms via chromosome-mediated mutations or plasmid-mediated mobile colistin resistance (mcr) gene, in which the transfer of mcr is the predominant factor underlying the spread of colistin resistance. However, the factors that are responsible for the spread of the mcr gene are still unclear. In this study, we observed that mcr-1 inhibited the transfer of the pHNSHP45 backbone in liquid mating. Similar inhibitory effect of mcr-1.6 and chromosomal mutant ΔmgrB suggested that colistin resistance, acquired from either plasmid or chromosomal mutation, hindered the transfer of colistin resistance-related plasmid in vitro. Dual plasmid system further proved that co-existing plasmid transfer was reduced too. However, this inhibitory effect was reversed in vivo. Some factors in the gut, including bile salt and anaerobic conditions, could increase the transfer frequency of the mcr-1-containing plasmid. Our results demonstrated the potential risk for the spread of colistin resistance in the intestine, provide a scientific basis against the transmission of colistin resistance threat.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Rundong Shu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Leqi Hou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Panpan Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China;
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Correspondence: ; Tel.: +86-25-84396645
| |
Collapse
|
8
|
Mitra S, Agarwal T, Naik A, Padhi TR, Basu S, Behera UC. Post-Traumatic Endophthalmitis: Clinico-Microbiological Profile, Antimicrobial Susceptibility and Prognostic Factors at a Tertiary Eye Care Centre in Eastern India. Semin Ophthalmol 2021; 36:742-750. [PMID: 33750256 DOI: 10.1080/08820538.2021.1900290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To analyse clinico-microbiological profile, antimicrobial susceptibilities, and visual prognostic factors in post-traumatic endophthalmitis (PTE).Methods: Retrospective clinico-microbiological data analysis for five years (2014-18). Prognostic factors for visual outcomes were analysed by multivariate logistic regression analysis.Results: Four hundred and eighteen patients with clinically diagnosed PTE were analysed. Culture positivity was found in 46.7% samples (44.5% vitreous, 83.3% non-vitreous). Pathogens isolated were Gram positive cocci (GPC, 49.3%, good susceptibility to vancomycin/cefazolin), Gram negative bacilli (GNB, 28.1%, <90% susceptibility to all antibiotics and 25.8% multidrug resistance), Gram positive bacilli (13.1%) and fungi (9.5%). Poor visual prognosis was associated with culture positivity, fungal or polymicrobial PTE, poor view of fundus and presence of membranes on ultrasound scans.Conclusion: GPC and GNB are the predominant pathogens in PTE, with GNB most commonly multidrug resistant. Culture positivity, polymicrobial and fungal PTE, poor view of fundus and vitreous membranes are markers of poor visual outcome.
Collapse
Affiliation(s)
- Sanchita Mitra
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad and Ocular Microbiology Services, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Tushar Agarwal
- Retina and Uveitis Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Abhijit Naik
- Retina and Uveitis Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Tapas Ranjan Padhi
- Retina and Uveitis Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Soumyava Basu
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Umesh Chandra Behera
- Retina and Uveitis Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| |
Collapse
|