1
|
Singh RB, Koh S, Sharma N, Woreta FA, Hafezi F, Dua HS, Jhanji V. Keratoconus. Nat Rev Dis Primers 2024; 10:81. [PMID: 39448666 DOI: 10.1038/s41572-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Fasika A Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Hafezi
- ELZA Institute, Zurich, Switzerland
- EMAGine AG, Zug, Switzerland
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harminder S Dua
- Department of Ophthalmology, University of Nottingham, Nottingham, UK
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Goodman D, Zhu AY. Utility of artificial intelligence in the diagnosis and management of keratoconus: a systematic review. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1380701. [PMID: 38984114 PMCID: PMC11182163 DOI: 10.3389/fopht.2024.1380701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Introduction The application of artificial intelligence (AI) systems in ophthalmology is rapidly expanding. Early detection and management of keratoconus is important for preventing disease progression and the need for corneal transplant. We review studies regarding the utility of AI in the diagnosis and management of keratoconus and other corneal ectasias. Methods We conducted a systematic search for relevant original, English-language research studies in the PubMed, Web of Science, Embase, and Cochrane databases from inception to October 31, 2023, using a combination of the following keywords: artificial intelligence, deep learning, machine learning, keratoconus, and corneal ectasia. Case reports, literature reviews, conference proceedings, and editorials were excluded. We extracted the following data from each eligible study: type of AI, input used for training, output, ground truth or reference, dataset size, availability of algorithm/model, availability of dataset, and major study findings. Results Ninety-three original research studies were included in this review, with the date of publication ranging from 1994 to 2023. The majority of studies were regarding the use of AI in detecting keratoconus or subclinical keratoconus (n=61). Among studies regarding keratoconus diagnosis, the most common inputs were corneal topography, Scheimpflug-based corneal tomography, and anterior segment-optical coherence tomography. This review also summarized 16 original research studies regarding AI-based assessment of severity and clinical features, 7 studies regarding the prediction of disease progression, and 6 studies regarding the characterization of treatment response. There were only three studies regarding the use of AI in identifying susceptibility genes involved in the etiology and pathogenesis of keratoconus. Discussion Algorithms trained on Scheimpflug-based tomography seem promising tools for the early diagnosis of keratoconus that can be particularly applied in low-resource communities. Future studies could investigate the application of AI models trained on multimodal patient information for staging keratoconus severity and tracking disease progression.
Collapse
|
3
|
Alió del Barrio JL, Eldanasoury AM, Arbelaez J, Faini S, Versaci F. Artificial Neural Network for Automated Keratoconus Detection Using a Combined Placido Disc and Anterior Segment Optical Coherence Tomography Topographer. Transl Vis Sci Technol 2024; 13:13. [PMID: 38587437 PMCID: PMC11005070 DOI: 10.1167/tvst.13.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose To assess the efficacy of an automated program for keratoconus and keratoconus suspect detection based on corneal measurements provided by a combined Placido disc and anterior segment optical coherence tomography (OCT) topographer. Methods In a multicentric cross-sectional study, an artificial neural network (ANN) was created using 6677 eyes from an equal number of patients (classified as 2663 normal eyes, 1616 keratoconus eyes, 210 keratoconus suspect eyes, 1519 myopic postoperative eyes, and 669 abnormal eyes). Each group was randomly divided into a training set (70% of the dataset) and a validation set (the remaining 30%). A multilayer perceptron network with a backpropagation learning algorithm was developed for the study. Indexes used to train the ANN were based on curvature and elevation of both the anterior and posterior corneal surfaces and the new corneal OCT indexes-based on corneal, stromal, and epithelial thicknesses. Results For keratoconus detection, our ANN showed an accuracy of 98.6%, precision of 96%, recall of 97.9%, and F1-score of 96.9%. For keratoconus suspect detection, our ANN showed an accuracy of 98.5%, precision of 83.6%, recall of 69.7%, and F1-score of 76%. Conclusions Compared to previous literature, the addition of new OCT-based epithelial and stromal thickness indexes improves ANN detection capacity of keratoconus suspect eyes. For already stablished keratoconus our ANN detection capacity is excellent, but equivalent to previous evidence without incorporating such new OCT-based indexes. Translational Relevance OCT-based epithelial and stromal thickness indexes improve ANN detection capacity of keratoconus on its early stages.
Collapse
Affiliation(s)
- Jorge L. Alió del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain
- Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | |
Collapse
|
4
|
Tey KY, Cheong EZK, Ang M. Potential applications of artificial intelligence in image analysis in cornea diseases: a review. EYE AND VISION (LONDON, ENGLAND) 2024; 11:10. [PMID: 38448961 PMCID: PMC10919022 DOI: 10.1186/s40662-024-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Artificial intelligence (AI) is an emerging field which could make an intelligent healthcare model a reality and has been garnering traction in the field of medicine, with promising results. There have been recent developments in machine learning and/or deep learning algorithms for applications in ophthalmology-primarily for diabetic retinopathy, and age-related macular degeneration. However, AI research in the field of cornea diseases is relatively new. Algorithms have been described to assist clinicians in diagnosis or detection of cornea conditions such as keratoconus, infectious keratitis and dry eye disease. AI may also be used for segmentation and analysis of cornea imaging or tomography as an adjunctive tool. Despite the potential advantages that these new technologies offer, there are challenges that need to be addressed before they can be integrated into clinical practice. In this review, we aim to summarize current literature and provide an update regarding recent advances in AI technologies pertaining to corneal diseases, and its potential future application, in particular pertaining to image analysis.
Collapse
Affiliation(s)
- Kai Yuan Tey
- Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | | | - Marcus Ang
- Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
5
|
Vandevenne MM, Favuzza E, Veta M, Lucenteforte E, Berendschot TT, Mencucci R, Nuijts RM, Virgili G, Dickman MM. Artificial intelligence for detecting keratoconus. Cochrane Database Syst Rev 2023; 11:CD014911. [PMID: 37965960 PMCID: PMC10646985 DOI: 10.1002/14651858.cd014911.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Keratoconus remains difficult to diagnose, especially in the early stages. It is a progressive disorder of the cornea that starts at a young age. Diagnosis is based on clinical examination and corneal imaging; though in the early stages, when there are no clinical signs, diagnosis depends on the interpretation of corneal imaging (e.g. topography and tomography) by trained cornea specialists. Using artificial intelligence (AI) to analyse the corneal images and detect cases of keratoconus could help prevent visual acuity loss and even corneal transplantation. However, a missed diagnosis in people seeking refractive surgery could lead to weakening of the cornea and keratoconus-like ectasia. There is a need for a reliable overview of the accuracy of AI for detecting keratoconus and the applicability of this automated method to the clinical setting. OBJECTIVES To assess the diagnostic accuracy of artificial intelligence (AI) algorithms for detecting keratoconus in people presenting with refractive errors, especially those whose vision can no longer be fully corrected with glasses, those seeking corneal refractive surgery, and those suspected of having keratoconus. AI could help ophthalmologists, optometrists, and other eye care professionals to make decisions on referral to cornea specialists. Secondary objectives To assess the following potential causes of heterogeneity in diagnostic performance across studies. • Different AI algorithms (e.g. neural networks, decision trees, support vector machines) • Index test methodology (preprocessing techniques, core AI method, and postprocessing techniques) • Sources of input to train algorithms (topography and tomography images from Placido disc system, Scheimpflug system, slit-scanning system, or optical coherence tomography (OCT); number of training and testing cases/images; label/endpoint variable used for training) • Study setting • Study design • Ethnicity, or geographic area as its proxy • Different index test positivity criteria provided by the topography or tomography device • Reference standard, topography or tomography, one or two cornea specialists • Definition of keratoconus • Mean age of participants • Recruitment of participants • Severity of keratoconus (clinically manifest or subclinical) SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), Ovid MEDLINE, Ovid Embase, OpenGrey, the ISRCTN registry, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP). There were no date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 29 November 2022. SELECTION CRITERIA We included cross-sectional and diagnostic case-control studies that investigated AI for the diagnosis of keratoconus using topography, tomography, or both. We included studies that diagnosed manifest keratoconus, subclinical keratoconus, or both. The reference standard was the interpretation of topography or tomography images by at least two cornea specialists. DATA COLLECTION AND ANALYSIS Two review authors independently extracted the study data and assessed the quality of studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. When an article contained multiple AI algorithms, we selected the algorithm with the highest Youden's index. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS We included 63 studies, published between 1994 and 2022, that developed and investigated the accuracy of AI for the diagnosis of keratoconus. There were three different units of analysis in the studies: eyes, participants, and images. Forty-four studies analysed 23,771 eyes, four studies analysed 3843 participants, and 15 studies analysed 38,832 images. Fifty-four articles evaluated the detection of manifest keratoconus, defined as a cornea that showed any clinical sign of keratoconus. The accuracy of AI seems almost perfect, with a summary sensitivity of 98.6% (95% confidence interval (CI) 97.6% to 99.1%) and a summary specificity of 98.3% (95% CI 97.4% to 98.9%). However, accuracy varied across studies and the certainty of the evidence was low. Twenty-eight articles evaluated the detection of subclinical keratoconus, although the definition of subclinical varied. We grouped subclinical keratoconus, forme fruste, and very asymmetrical eyes together. The tests showed good accuracy, with a summary sensitivity of 90.0% (95% CI 84.5% to 93.8%) and a summary specificity of 95.5% (95% CI 91.9% to 97.5%). However, the certainty of the evidence was very low for sensitivity and low for specificity. In both groups, we graded most studies at high risk of bias, with high applicability concerns, in the domain of patient selection, since most were case-control studies. Moreover, we graded the certainty of evidence as low to very low due to selection bias, inconsistency, and imprecision. We could not explain the heterogeneity between the studies. The sensitivity analyses based on study design, AI algorithm, imaging technique (topography versus tomography), and data source (parameters versus images) showed no differences in the results. AUTHORS' CONCLUSIONS AI appears to be a promising triage tool in ophthalmologic practice for diagnosing keratoconus. Test accuracy was very high for manifest keratoconus and slightly lower for subclinical keratoconus, indicating a higher chance of missing a diagnosis in people without clinical signs. This could lead to progression of keratoconus or an erroneous indication for refractive surgery, which would worsen the disease. We are unable to draw clear and reliable conclusions due to the high risk of bias, the unexplained heterogeneity of the results, and high applicability concerns, all of which reduced our confidence in the evidence. Greater standardization in future research would increase the quality of studies and improve comparability between studies.
Collapse
Affiliation(s)
- Magali Ms Vandevenne
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Eleonora Favuzza
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Mitko Veta
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science and Applications «G. Parenti», University of Florence, Florence, Italy
| | - Tos Tjm Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Rita Mencucci
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Rudy Mma Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Queen's University Belfast, Belfast, UK
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| |
Collapse
|
6
|
Zhang Z, Wang Y, Zhang H, Samusak A, Rao H, Xiao C, Abula M, Cao Q, Dai Q. Artificial intelligence-assisted diagnosis of ocular surface diseases. Front Cell Dev Biol 2023; 11:1133680. [PMID: 36875760 PMCID: PMC9981656 DOI: 10.3389/fcell.2023.1133680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
With the rapid development of computer technology, the application of artificial intelligence (AI) in ophthalmology research has gained prominence in modern medicine. Artificial intelligence-related research in ophthalmology previously focused on the screening and diagnosis of fundus diseases, particularly diabetic retinopathy, age-related macular degeneration, and glaucoma. Since fundus images are relatively fixed, their standards are easy to unify. Artificial intelligence research related to ocular surface diseases has also increased. The main issue with research on ocular surface diseases is that the images involved are complex, with many modalities. Therefore, this review aims to summarize current artificial intelligence research and technologies used to diagnose ocular surface diseases such as pterygium, keratoconus, infectious keratitis, and dry eye to identify mature artificial intelligence models that are suitable for research of ocular surface diseases and potential algorithms that may be used in the future.
Collapse
Affiliation(s)
- Zuhui Zhang
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China.,National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Wang
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China
| | - Hongzhen Zhang
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China
| | - Arzigul Samusak
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China
| | - Huimin Rao
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China
| | - Chun Xiao
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China
| | - Muhetaer Abula
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China
| | - Qixin Cao
- Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Huzhou, China
| | - Qi Dai
- The First People's Hospital of Aksu District in Xinjiang, Aksu City, China.,National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Artificial intelligence has advanced rapidly in recent years and has provided powerful tools to aid with the diagnosis, management, and treatment of ophthalmic diseases. This article aims to review the most current clinical artificial intelligence applications in anterior segment diseases, with an emphasis on microbial keratitis, keratoconus, dry eye syndrome, and Fuchs endothelial dystrophy. RECENT FINDINGS Most current artificial intelligence approaches have focused on developing deep learning algorithms based on various imaging modalities. Algorithms have been developed to detect and differentiate microbial keratitis classes and quantify microbial keratitis features. Artificial intelligence may aid with early detection and staging of keratoconus. Many advances have been made to detect, segment, and quantify features of dry eye syndrome and Fuchs. There is significant variability in the reporting of methodology, patient population, and outcome metrics. SUMMARY Artificial intelligence shows great promise in detecting, diagnosing, grading, and measuring diseases. There is a need for standardization of reporting to improve the transparency, validity, and comparability of algorithms.
Collapse
Affiliation(s)
- Linda Kang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Dena Ballouz
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Maria A. Woodward
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI
| |
Collapse
|