Ji T, Ye W, Xiao W, Dawson G, Dong Q, Gwenin C. Iridium oxide-modified reference screen-printed electrodes for point-of-care portable electrochemical cortisol detection.
Talanta 2024;
280:126776. [PMID:
39216420 DOI:
10.1016/j.talanta.2024.126776]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Cortisol is a well-known stress biomarker; this study focuses on using electrochemical immuno-sensing to measure the concentration of cortisol selectively and sensitively in artificial samples. Anti-cortisol antibodies have been immobilised on polycrystalline Au electrodes via strong covalent thiol bonds, fabricating an electrochemical bio-immunosensor for cortisol detection. IrOx was then anodically electrodeposited as a reference electrode on a commercial screen-printed electrode and electrochemical impedance spectrometry (EIS) studies were used to correlate the electrochemical response to cortisol concentration and the induced changes in charge transfer resistance (Rct). A linear relationship between the Rct and the logarithm of cortisol concentration was found in concentrations ranging from 1 ng/mL to 1 mg/mL with limit of detection at 11.85 pg/mL (32.69 pM). The modification of the reference electrode with iridium oxide has greatly improved the reproducibility of the screen-printed electrode. The sensing system can provide a reliable and sensitive detection approach for cortisol measurements.
Collapse