1
|
Gupta D, Mao J, Guo Z. Bifunctional Catalysts for CO 2 Reduction and O 2 Evolution: A Pivotal for Aqueous Rechargeable Zn-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407099. [PMID: 38924576 DOI: 10.1002/adma.202407099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The quest for the advancement of green energy storage technologies and reduction of carbon footprint is determinedly rising toward carbon neutrality. Aqueous rechargeable Zn-CO2 batteries (ARZCBs) hold the great potential to encounter both the targets simultaneously, i.e., green energy storage and CO2 conversion to value-added chemicals/fuels. The major descriptor of ARZCBs efficiency is allied with the reactions occurring at cathode during discharging (CO2 reduction) and charging (O2 evolution) which own different fundamental mechanisms and hence mandate the employment of two different catalysts. This presents an overall complex and expensive battery system which requires a concrete solution, while the development and application of a bifunctional cathode catalyst toward both reactions could reduce the complexity and cost and thus can be a pivotal for ARZCBs. However, despite the increasing research interest and ongoing research, a systematic evaluation of bifunctional catalysts is rarely reported. In this review, the need of bifunctional cathode catalysts for ARZCBs and associated challenges with strategies have been critically assessed. A detailed progress examination and understanding toward designing of bifunctional catalyst for ARZCBs have been provided. This review will enlighten the future research approaching boosted performance of ARZCBs through the development of efficient bifunctional cathode catalysts.
Collapse
Affiliation(s)
- Divyani Gupta
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Wang F, Qiu K, Zhang W, Zhu K, Chen J, Liao M, Dong X, Wang F. Mesoporous Carbon for High-Performance Near-Neutral Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304558. [PMID: 37649197 DOI: 10.1002/smll.202304558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 09/01/2023]
Abstract
Near-neutral zinc-air batteries (ZABs) have garnered significant research interest due to their high energy density, exceptional electrochemical reversibility, and adaptability to ambient air. However, these batteries suffer from substantial electrochemical polarization, low energy efficiency, and poor rate performance. In this study, a mesoporous carbon (meso-C) with a high specific surface area (1081 m2 g-1 ) and abundant porous structure for the cathode of near-neutral ZABs using a scalable synthesis method is prepared. The meso-C-based cathode is endowed with stable hydrophobicity and abundant electrochemical active sites, which considerably improve the energy efficiency, rate performance, and cycle life of the battery compare to commercial carbon black-based cathode when applied to near-neutral ZABs with 1 mol kg-1 (1 m) zinc acetate and 1 m zinc trifluoromethanesulfonate electrolytes. Additionally, the mesopores of meso-C facilitate the construction of better three-phase reaction interfaces and contribute to better electrochemical reversibility. The work presents a general and scalable approach for carbon materials in the cathode of near-neutral ZABs.
Collapse
Affiliation(s)
- Fengmei Wang
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ke Qiu
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Wei Zhang
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Kerun Zhu
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiawei Chen
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mochou Liao
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoli Dong
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fei Wang
- Department of Materials Science, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
3
|
Dias GDS, Costa JM, Almeida Neto AFD. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Adv Colloid Interface Sci 2023; 315:102891. [PMID: 37058836 DOI: 10.1016/j.cis.2023.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The rechargeable alkaline aqueous zinc-air batteries (ZABs) are prospective candidates to supply the energy demand for their high theoretical energy density, inherent safety, and environmental friendliness. However, their practical application is mainly restricted by the unsatisfactory efficiency of the air electrode, leading to an intense search for high-efficient oxygen electrocatalysts. In recent years, the composites of carbon materials and transition metal chalcogenides (TMC/C) have emerged as promising alternatives because of the unique properties of these single compounds and the synergistic effect between them. In this sense, this review presented the electrochemical properties of these composites and their effects on the ZAB performance. The operational fundamentals of the ZABs were described. After elucidating the role of the carbon matrix in the hybrid material, the latest developments in the ZAB performance of the monometallic structure and spinel of TMC/C were detailed. In addition, we report topics on doping and heterostructure due to the large number of studies involving these specific defects. Finally, a critical conclusion and a brief overview sought to contribute to the advancement of TMC/C in the ZABs.
Collapse
Affiliation(s)
- Giancarlo de Souza Dias
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato St., 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Zhang J, Huang Y, Yang Q, Venkatesh V, Synodis M, Pikul JH, Bidstrup Allen SA, Allen MG. High-Energy-Density Zinc-Air Microbatteries with Lean PVA-KOH-K 2CO 3 Gel Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6807-6816. [PMID: 36700920 DOI: 10.1021/acsami.2c19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Small-scale, primary electrochemical energy storage devices ("microbatteries") are critical power sources for microelectromechanical system (MEMS)-based sensors and actuators. However, the achievable volumetric and gravimetric energy densities of microbatteries are typically insufficient for intermediate-term applications of MEMS-enabled distributed internet-connected devices. Further, in the increasing subset of Internet of Things (IoT) nodes, where actuation is desired, the peak power density of the microbattery must be simultaneously considered. Metal-air approaches to achieving microbatteries are attractive, as the anode and cathode are amenable to miniaturization; however, further improvements in energy density can be obtained by minimizing the electrolyte volume. To investigate these potential improvements, this work studied very lean hydrogel electrolytes based on poly(vinyl alcohol) (PVA). Integration of high potassium hydroxide (KOH) loading into the PVA hydrogel improved electrolyte performance. The addition of potassium carbonate (K2CO3) to the KOH-PVA gel decreased the carbonation consumption rate of KOH in the gel electrolyte by 23.8% compared to PVA-KOH gel alone. To assess gel performance, a microbattery was formed from a zinc (Zn) anode layer, a gel electrolyte layer, and a carbon-platinum (C-Pt) air cathode layer. Volumetric energy densities of approximately 1400 Wh L-1 and areal peak power densities of 139 mW cm-2 were achieved with a PVA-KOH-K2CO3 electrolyte. Further structural optimization, including using multilayer gel electrolytes and thinning the air cathode, resulted in volumetric and gravimetric energy densities of 1576 Wh L-1 and 420 Wh kg-1, respectively. The batteries described in this work are manufactured in an open environment and fabricated using a straightforward layer-by-layer method, enabling the potential for high fabrication throughput in a MEMS-compatible fashion.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Yanghang Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Qi Yang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Vishal Venkatesh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Michael Synodis
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - James H Pikul
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Sue Ann Bidstrup Allen
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Mark G Allen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
5
|
Sassenburg M, Kelly M, Subramanian S, Smith WA, Burdyny T. Zero-Gap Electrochemical CO 2 Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation. ACS ENERGY LETTERS 2023; 8:321-331. [PMID: 36660368 PMCID: PMC9841607 DOI: 10.1021/acsenergylett.2c01885] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Salt precipitation is a problem in electrochemical CO2 reduction electrolyzers that limits their long-term durability and industrial applicability by reducing the active area, causing flooding and hindering gas transport. Salt crystals form when hydroxide generation from electrochemical reactions interacts homogeneously with CO2 to generate substantial quantities of carbonate. In the presence of sufficient electrolyte cations, the solubility limits of these species are reached, resulting in "salting out" conditions in cathode compartments. Detrimental salt precipitation is regularly observed in zero-gap membrane electrode assemblies, especially when operated at high current densities. This Perspective briefly discusses the mechanisms for salt formation, and recently reported strategies for preventing or reversing salt formation in zero-gap CO2 reduction membrane electrode assemblies. We link these approaches to the solubility limit of potassium carbonate within the electrolyzer and describe how each strategy separately manipulates water, potassium, and carbonate concentrations to prevent (or mitigate) salt formation.
Collapse
Affiliation(s)
- Mark Sassenburg
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| | - Maria Kelly
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Siddhartha Subramanian
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| | - Wilson A. Smith
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| |
Collapse
|
6
|
Heterostructure engineering of NiCo layered double hydroxide@NiCo2S4 for solid-state rechargeable zinc-air batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Liu X, Fan X, Liu B, Ding J, Deng Y, Han X, Zhong C, Hu W. Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006461. [PMID: 34050684 DOI: 10.1002/adma.202006461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Electrically rechargeable zinc-air batteries (ERZABs) have attracted substantial research interest as one of the best candidate power sources for electric vehicles, grid-scale energy storage, and portable electronics owing to their high theoretical capacity, low cost, and environmental benignity. However, the realization of ERZABs with long cycle life and high energy and power densities is still a considerable challenge. The electrolyte, which serves as the ionic conductor, is one of the core components of ERZABs, as it plays a significant role during the discharge-charge process and greatly influences the rechargeability, operating voltage, lifespan, power density, and safety of ERZABs. Herein, the fundamental electrochemistry of electrolyte materials for ERZABs and the associated challenges are presented. Furthermore, recent advances in electrolyte materials for ERZABs, including alkaline aqueous electrolytes, nonalkaline electrolytes, ionic liquids, and semisolid-state electrolytes are discussed. This work aims to provide insights into the future exploration of high-performance electrolytes and thus promote the development of ERZABs.
Collapse
Affiliation(s)
- Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
8
|
Thakur P, Alam K, Roy A, Downing C, Nicolosi V, Sen P, Narayanan TN. Extending the Cyclability of Alkaline Zinc-Air Batteries: Synergistic Roles of Li + and K + Ions in Electrodics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33112-33122. [PMID: 34247478 DOI: 10.1021/acsami.1c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tweaking the electrolyte of the anode compartment of zinc-air battery (ZAB) system is shown to be extending the charge-discharge cyclability of the cell. An alkaline zinc (Zn)-air cell working for ∼32 h (192 cycles) without failure is extended to >55 h (>330 cycles) by modifying the anode compartment with a mixture electrolyte of KOH and LiOH. The cell containing the mixture electrolyte has a low overpotential for charging along with high discharge capacity. The role of Li+ ions in tuning the electrode morphology and electrodics is studied both theoretically and experimentally. The synergistic effect of Li+ and K+ ions in the electrolyte on improved ZAB performance is proven. This study can pave new ways for the commercial implementation of ZAB, where it has already proven its potential in low-cost, high energy density, and mobility applications.
Collapse
Affiliation(s)
- Pallavi Thakur
- Tata Institute of Fundamental Research-Hyderabad, Hyderabad, Telangana 500046, India
| | - Khorsed Alam
- Harish-Chandra Research Institute, HBNI, Allahabad, Uttar Pradesh 211019, India
| | - Ahin Roy
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Clive Downing
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Valeria Nicolosi
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Prasenjit Sen
- Harish-Chandra Research Institute, HBNI, Allahabad, Uttar Pradesh 211019, India
| | | |
Collapse
|
9
|
Ipadeola AK, Haruna AB, Gaolatlhe L, Lebechi AK, Meng J, Pang Q, Eid K, Abdullah AM, Ozoemena KI. Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Aderemi B. Haruna
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Lesego Gaolatlhe
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Augustus K. Lebechi
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Jiashen Meng
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Quanquan Pang
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Kamel Eid
- Gas Processing Centre, College of Engineering Qatar University Doha 2713 Qatar
| | - Aboubakr M. Abdullah
- Centre for Advanced Materials, College of Engineering Qatar University Doha 2713 Qatar
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
10
|
Chen P, Zhang K, Tang D, Liu W, Meng F, Huang Q, Liu J. Recent Progress in Electrolytes for Zn-Air Batteries. Front Chem 2020; 8:372. [PMID: 32528925 PMCID: PMC7264378 DOI: 10.3389/fchem.2020.00372] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Zn-air battery is considered as one of the most promising candidates for next-generation batteries for energy storage due to safety, high energy density, and low cost. There are many challenges in electrolytes for developing high-performance rechargeable Zn-air cells as well as electrocatalysts. An electrolyte is the crucial part of the rechargeable Zn-air batteries that determine their capacity, cycling stability, and lifetime. This paper reviews the most recent progress in designing and fabricating electrolytes in aqueous and flexible Zn-air batteries. The discussion on the surface reaction relationships was covered between air-catalyst-electrolyte and electrolyte-zinc reaction mechanism. We highlight the recent developments of three different electrolytes in zinc-air battery: aqueous electrolyte, room temperature ionic liquid, and quasi-solid flexible electrolyte. Furthermore, the general perspective is proposed for designing and fabricating electrolytes to improve the performance and prolong the lifetime of Zn-air batteries.
Collapse
Affiliation(s)
- Peng Chen
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Keyi Zhang
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Dejian Tang
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Weilin Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Fancheng Meng
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qiuwei Huang
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jiehua Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
11
|
Durmus YE, Montiel Guerrero SS, Tempel H, Hausen F, Kungl H, Eichel RA. Influence of Al Alloying on the Electrochemical Behavior of Zn Electrodes for Zn-Air Batteries With Neutral Sodium Chloride Electrolyte. Front Chem 2019; 7:800. [PMID: 31824927 PMCID: PMC6880620 DOI: 10.3389/fchem.2019.00800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Zn alloy electrodes containing 10 wt. % Al were prepared to examine the applicability as anodes in primary Zn-air batteries with neutral 2M NaCl electrolyte. These electrodes were investigated by electrochemical measurements and microscopic techniques (SEM, LSM, AFM). Based on the cyclic voltammetry and intermediate term (24 h) discharge experiments, the only active element in the as-prepared alloy was found to be Zn. It was further confirmed by LSM that Zn rich areas dissolved while Al remained passive during discharge. The passive state of Al was also demonstrated by conductive AFM investigations on the as-cast alloy surfaces. The results on potentiodynamic polarization and weight loss measurements indicated that the alloy electrode was less prone to corrosion than pure Zn electrode. The electrochemical behavior of the electrodes was modified under certain cathodic polarization previous to measurements. Accordingly, originating from Al activation due to application of cathodic potentials, potentiodynamic polarization studies showed a clear shift on the corrosion potentials of the alloy toward more negative values. On the basis of these results, with the precondition of Al activation prior to discharge experiments, the effect of Al alloying on the Zn electrodes was revealed as temporarily enhanced potentials on the discharge profiles in comparison to pure Zn electrodes.
Collapse
Affiliation(s)
- Yasin Emre Durmus
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Saul Said Montiel Guerrero
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Electrical Engineering and Information Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Hermann Tempel
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Florian Hausen
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany.,IESW, Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Hans Kungl
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany.,IESW, Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Otani T, Yasuda T, Kunimoto M, Yanagisawa M, Fukunaka Y, Homma T. Effect of Li+ addition on growth behavior of ZnO during anodic dissolution of Zn negative electrode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Latz A, Danner T, Horstmann B, Jahnke T. Microstructure‐ and Theory‐Based Modeling and Simulation of Batteries and Fuel Cells. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arnulf Latz
- Deutsches Zentrum für Luft- und RaumfahrtInstitut für Technische Thermodynamik Pfaffenwaldring 38 – 40 70569 Stuttgart Germany
- Helmholtz-Institut Ulm Helmholtzstraße 11 89081 Ulm Germany
- Universität UlmInstitut für Elektrochemie Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Timo Danner
- Deutsches Zentrum für Luft- und RaumfahrtInstitut für Technische Thermodynamik Pfaffenwaldring 38 – 40 70569 Stuttgart Germany
- Helmholtz-Institut Ulm Helmholtzstraße 11 89081 Ulm Germany
| | - Birger Horstmann
- Deutsches Zentrum für Luft- und RaumfahrtInstitut für Technische Thermodynamik Pfaffenwaldring 38 – 40 70569 Stuttgart Germany
- Helmholtz-Institut Ulm Helmholtzstraße 11 89081 Ulm Germany
| | - Thomas Jahnke
- Deutsches Zentrum für Luft- und RaumfahrtInstitut für Technische Thermodynamik Pfaffenwaldring 38 – 40 70569 Stuttgart Germany
| |
Collapse
|
14
|
Krewer U, Weinzierl C, Ziv N, Dekel DR. Impact of carbonation processes in anion exchange membrane fuel cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.093] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
|
16
|
Overcurrent Abuse of Primary Prismatic Zinc–Air Battery Cells Studying Air Supply Effects on Performance and Safety Shut-Down. BATTERIES-BASEL 2017. [DOI: 10.3390/batteries3010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Schröder D, Laue V, Krewer U. Numerical simulation of gas-diffusion-electrodes with moving gas–liquid interface: A study on pulse-current operation and electrode flooding. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|