Wang M, Wang X, Feng S, He D, Jiang P. Amorphous Ni-P nanoparticles anchoring on nickel foam as an efficient integrated anode for glucose sensing and oxygen evolution.
NANOTECHNOLOGY 2020;
31:455503. [PMID:
32736370 DOI:
10.1088/1361-6528/abab30]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ever-growing efforts have been devoted to developing cost-effective and earth-abundant electrocatalysts with high-performance in biosensing and energy energy conversion. In this work, amorphous nickel-phosphorus (Ni-P) nanoparticles anchoring on Ni foam (Ni-P/NF) were prepared through a facile electroless deposition approach. The morphology and composition were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. As an integrated anode, Ni-P/NF exhibits high performance towards glucose electrochemical sensing, with a high sensitivity of 13.89 mA mM-1 cm-2, a low detection limit of 1 µM, a wide detection ranges from 2 µM to 0.54 mM, and a quick response (<10 s), as well as good selectivity and reliability for real sample analysis in human serum. In addition to electrocatalytic glucose oxidation, Ni-P/NF shows remarkable catalytic activity towards oxygen evolution reaction (OER) in alkaline solution and it only needs an overpotential of 360 mV to afford 50 mA cm-2. Moreover, Ni-P/NF shows excellent durability under alkaline OER condition. All these results demonstrate Ni-P/NF as highly efficient integrated anode in both biosensing and energy conversion.
Collapse