1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Jiang C, Ni J, Jin GP. Magnetic potassium cobalt hexacyanoferrate nanocomposites for efficient adsorption of rubidium in solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Estelrich J, Busquets MA. Prussian Blue: A Safe Pigment with Zeolitic-Like Activity. Int J Mol Sci 2021; 22:E780. [PMID: 33467391 PMCID: PMC7830864 DOI: 10.3390/ijms22020780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/26/2022] Open
Abstract
Prussian blue (PB) and PB analogues (PBA) are coordination network materials that present important similarities with zeolites concretely with their ability of adsorbing cations. Depending on the conditions of preparation, which is cheap and easy, PB can be classified into soluble PB and insoluble PB. The zeolitic-like properties are mainly inherent to insoluble form. This form presents some defects in its cubic lattice resulting in an open structure. The vacancies make PB capable of taking up and trapping ions or molecules into the lattice. Important adsorption characteristics of PB are a high specific area (370 m2 g-1 determined according the BET theory), uniform pore diameter, and large pore width. PB has numerous applications in many scientific and technological fields. PB are assembled into nanoparticles that, due to their biosafety and biocompatibility, can be used for biomedical applications. PB and PBA have been shown to be excellent sorbents of radioactive cesium and radioactive and nonradioactive thallium. Other cations adsorbed by PB are K+, Na+, NH4+, and some divalent cations. PB can also capture gaseous molecules, hydrocarbons, and even luminescent molecules such as 2-aminoanthracene. As the main adsorptive application of PB is the selective removal of cations from the environment, it is important to easily separate the sorbent of the purified solution. To facilitate this, PB is encapsulated into a polymer or coats a support, sometimes magnetic particles. Finally, is remarkable to point out that PB can be recycled and the adsorbed material can be recovered.
Collapse
Affiliation(s)
- Joan Estelrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27–31, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology, University of Barcelona, Avda., Diagonal 645, 08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27–31, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology, University of Barcelona, Avda., Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Wang P, Zheng J, Ma X, Du X, Gao F, Hao X, Tang B, Abudula A, Guan G. Electroactive magnetic microparticles for the selective elimination of cesium ions in the wastewater. ENVIRONMENTAL RESEARCH 2020; 185:109474. [PMID: 32278925 DOI: 10.1016/j.envres.2020.109474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
To improve operability as well as the removal efficiency for cesium ions in the wastewater treatment, a novel electrochemically switched ion exchange (ESIX) technique by using electroactive Prussian-blue(PB)-based magnetic microparticles (PB@Fe3O4 microparticle) with different uniform particle sizes in the range of 300-900 nm as the adsorption materials was developed. The obtained PB@Fe3O4 microparticle were characterized by Scanning electron microscopy (SEM), Transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Thermogravimetric analysis (TGA). It is found that the PB can be well coated on the surface of Fe3O4 microsphere, which can be easily adsorbed on the magnetic electrode substrate for the electrochemical adsorption of Cs+ ions. Electrochemical adsorption of 97% Cs+ on PB/Fe3O4 was achieved in less than 10 min, and the maximum adsorption capacity was 16.13 mg/g, and the distribution coefficient (KD) of Cs+ ions reached as high as 3938. In addition, the electrochemical adsorption behavior of PB@Fe3O4 microparticle fitted well with the Freundlich adsorption isotherm and the Pseudo-second-order kinetic models. It is expected that such an ESIX technique using PB@Fe3O4 microparticle can be applied for the separation and recovery of dilute Cs+ ions from cesium-contaminated solution in a practical process.
Collapse
Affiliation(s)
- Peifen Wang
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 2-1-3 Matsubara, Aomori, 030-0813, Japan; Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
| | - Junlan Zheng
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xuli Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR Ch
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fengfeng Gao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Bing Tang
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
| | - Guoqing Guan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 2-1-3 Matsubara, Aomori, 030-0813, Japan; Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan.
| |
Collapse
|
5
|
Li M, Zhao J, Li Y, Li M, Wu Y, Wang C, Jiao H, Na P. Enhanced adsorption of cesium ions by electrochemically switched ion exchange method: Based on surface-synthetic Na2Ti3O7 nanotubes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Shen Q, Du X, Gao F, Chang L, Zhang Z, Ma X, Hao X, Tang K. BiOCl-Coated Electroactive Film for Potential-Triggered Selective Removal of Cesium Ions from Simulated Wastewater. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qianyao Shen
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Fengfeng Gao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Lutong Chang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhonglin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xuli Ma
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
7
|
Magnetic K2Zn3[Fe(CN)6]2 @ Ni-P composites for highly selective cesium separation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|