1
|
Coskun OK, Muñoz M, Dongare S, Dean W, Gurkan BE. Understanding the Electrode-Electrolyte Interfaces of Ionic Liquids and Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3283-3300. [PMID: 38341773 DOI: 10.1021/acs.langmuir.3c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Developing unconventional electrolytes such as ionic liquids (ILs) and deep eutectic solvents (DESs) has led to remarkable advances in electrochemical energy storage and conversion devices. However, the understanding of the electrode-electrolyte interfaces of these electrolytes, specifically the liquid structure and the charge/electron transfer mechanism and rates, is lacking due to the complexity of molecular interactions, the difficulty in studying the buried interfaces with nanometer-scale resolution, and the distribution of the time scales for the various interfacial events. This Feature Article outlines the standing questions in the field, summarizes some of the exciting approaches and results, and discusses our contributions to probing the electrified interfaces by electrochemical impedance spectroscopy (EIS), surface-enhanced Raman spectroscopy (SERS), and neutron reflectivity (NR). The related findings are analyzed within electrical double-layer models to provide a framework for studying ILs, DESs, and, more broadly, the concentrated hydrogen-bonded electrolytes.
Collapse
Affiliation(s)
- Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - William Dean
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Burcu E Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
3
|
Zhao L, Li Y, Yu M, Peng Y, Ran F. Electrolyte-Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300283. [PMID: 37085907 PMCID: PMC10265108 DOI: 10.1002/advs.202300283] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The electrolyte-wettability of electrode materials in liquid electrolytes plays a crucial role in electrochemical energy storage, conversion systems, and beyond relied on interface electrochemical process. However, most electrode materials do not have satisfactory electrolyte-wettability for possibly electrochemical reaction. In the last 30 years, there are a lot of literature have directed at exploiting methods to improve electrolyte-wettability of electrodes, understanding basic electrolyte-wettability mechanisms of electrode materials, exploring the effect of electrolyte-wettability on its electrochemical energy storage, conversion, and beyond performance. This review systematically and comprehensively evaluates the effect of electrolyte-wettability on electrochemical energy storage performance of the electrode materials used in supercapacitors, metal ion batteries, and metal-based batteries, electrochemical energy conversion performance of the electrode materials used in fuel cells and electrochemical water splitting systems, as well as capacitive deionization performance of the electrode materials used in capacitive deionization systems. Finally, the challenges in approaches for improving electrolyte-wettability of electrode materials, characterization techniques of electrolyte-wettability, as well as electrolyte-wettability of electrode materials applied in special environment and other electrochemical systems with electrodes and liquid electrolytes, which gives future possible directions for constructing interesting electrolyte-wettability to meet the demand of high electrochemical performance, are also discussed.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsDepartment of Polymeric Materials Science and EngineeringSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Yuan Li
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsDepartment of Polymeric Materials Science and EngineeringSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsDepartment of Polymeric Materials Science and EngineeringSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsDepartment of Polymeric Materials Science and EngineeringSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsDepartment of Polymeric Materials Science and EngineeringSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhouGansu730050P. R. China
| |
Collapse
|
4
|
Wang Y, Xue K, Zhang X, Zhang X, Ma P, Yang B, Xu S, Lang J. High-voltage electrochemical double layer capacitors enabled by polymeric ionic liquid. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Ray A, Saruhan B. Application of Ionic Liquids for Batteries and Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2942. [PMID: 34072536 PMCID: PMC8197857 DOI: 10.3390/ma14112942] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Nowadays, the rapid development and demand of high-performance, lightweight, low cost, portable/wearable electronic devices in electrical vehicles, aerospace, medical systems, etc., strongly motivates researchers towards advanced electrochemical energy storage (EES) devices and technologies. The electrolyte is also one of the most significant components of EES devices, such as batteries and supercapacitors. In addition to rapid ion transport and the stable electrochemical performance of electrolytes, great efforts are required to overcome safety issues due to flammability, leakage and thermal instability. A lot of research has already been completed on solid polymer electrolytes, but they are still lagging for practical application. Over the past few decades, ionic liquids (ILs) as electrolytes have been of considerable interest in Li-ion batteries and supercapacitor applications and could be an important way to make breakthroughs for the next-generation EES systems. The high ionic conductivity, low melting point (lower than 100 °C), wide electrochemical potential window (up to 5-6 V vs. Li+/Li), good thermal stability, non-flammability, low volatility due to cation-anion combinations and the promising self-healing ability of ILs make them superior as "green" solvents for industrial EES applications. In this short review, we try to provide an overview of the recent research on ILs electrolytes, their advantages and challenges for next-generation Li-ion battery and supercapacitor applications.
Collapse
Affiliation(s)
| | - Bilge Saruhan
- German Aerospace Center (DLR), Department of High-Temperature and Functional Coatings, Institute of Materials Research, 51147 Cologne, Germany;
| |
Collapse
|
6
|
Pan S, Yao M, Zhang J, Li B, Xing C, Song X, Su P, Zhang H. Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors. Front Chem 2020; 8:261. [PMID: 32432074 PMCID: PMC7214745 DOI: 10.3389/fchem.2020.00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
The electrochemical stability of electrolytes is essential to the working potential of supercapacitors. Ionic liquids (ILs) are being considered as safe alternatives to current organic electrolytes and attracting extensive interests owing to their inflammability, widened potential windows, and superior ionic conductivity. Novel supercapacitors with IL electrolytes exhibit attractive energy density and can be utilized in various energy storage systems. Most previous studies focused on electrochemical performances, while rare attentions were devoted to energy storage process details or mechanisms. This review comprehensively summarizes the latest progress on formulated IL electrolytes for different types of supercapacitors, with an emphasis on the intrinsic understanding of the related energy storage mechanisms. Subsequently, comparisons of various IL-based liquid-state electrolytes as well as the state-of-the-art advancements in optimizing ILs electrolytes are introduced. The authors attempt to reveal the inherent correlation between the usage of IL electrolytes and the properties of supercapacitors via referenced works. Some emerging applications of ionogel electrolytes based on conventional polymers and poly(IL)s for flexible supercapacitors are also presented, including the existing problems. In addition, challenges and future perspectives of research in this field are highlighted.
Collapse
Affiliation(s)
- Shanshan Pan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Science, Beijing, China
| | - Meng Yao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Science, Beijing, China
| | - Jiahe Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Bosen Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Science, Beijing, China
| | - Chunxian Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xianli Song
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Science, Beijing, China
| | - Peipei Su
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Science, Beijing, China
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Science, Beijing, China.,Hebei Institute of Process Innovation Co. Ltd, Langfang, China
| |
Collapse
|