1
|
Acosta-Santoyo G, Treviño-Reséndez J, Robles I, Godínez LA, García-Espinoza JD. A review on recent environmental electrochemistry approaches for the consolidation of a circular economy model. CHEMOSPHERE 2024; 346:140573. [PMID: 38303389 DOI: 10.1016/j.chemosphere.2023.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.
Collapse
Affiliation(s)
- Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico.
| |
Collapse
|
2
|
Li Y, Schwab NL, Briber RM, Dura JA, Nguyen TV. Modification of Nafion's nanostructure for the water management of
PEM
fuel cells. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Yuanchao Li
- Department of Chemical and Petroleum Engineering University of Kansas Lawrence Kansas USA
| | - Natalie L. Schwab
- Materials Science and Engineering, A. James Clark School of Engineering University of Maryland College Park Maryland USA
- National Institute of Standards and Technology Center for Neutron Research Gaithersburg Gaithersburg Maryland USA
| | - Robert M. Briber
- Materials Science and Engineering, A. James Clark School of Engineering University of Maryland College Park Maryland USA
| | - Joseph A. Dura
- National Institute of Standards and Technology Center for Neutron Research Gaithersburg Gaithersburg Maryland USA
| | - Trung Van Nguyen
- Department of Chemical and Petroleum Engineering University of Kansas Lawrence Kansas USA
| |
Collapse
|
3
|
Seyrankaya A. Pressure Leaching of Copper Slag Flotation Tailings in Oxygenated Sulfuric Acid Media. ACS OMEGA 2022; 7:35562-35574. [PMID: 36249399 PMCID: PMC9557923 DOI: 10.1021/acsomega.2c02903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, a hydrometallurgical method for the recovery of copper, cobalt, and zinc from copper slag flotation tailings (SFT) was investigated. SFT contains large amounts of valuable metallic compounds, such as copper, cobalt, and zinc. A representative SFT sample containing 0.50% Cu, 0.148% Co, 3.93% Zn, and 39.50% Fe was used in experimental studies. High-pressure oxidative acid leaching of SFT was carried out to assess the effects of sulfuric acid concentration, oxygen partial pressure, reaction time, solid/liquid ratio, and temperature on the extraction of copper, cobalt, zinc, and iron. The dissolution of metals from the SFT sample increased with temperature and sulfuric acid concentration. However, high acid concentrations and high solid/liquid (S/L) ratios led to gel formation that caused filtration problems and inhibited metal dissolution. The optimum leaching conditions were found to be a leaching time of 90 min, an acid concentration of 250 kg/t, a temperature of 220 °C, an S/L ratio of 1:5, and an oxygen partial pressure of 0.7 MPa. Under these conditions, 93.1 ± 1.1% Cu, 96.3 ± 1.8% Co, and 92.3 ± 1.7% Zn were extracted. Iron dissolution was only 0.5 ± 0.1%. This hydrometallurgical process almost completely recovers valuable metals. In particular, cobalt, which is of great importance in the production of lithium-ion batteries, has been declared a critical metal by the United States, Canada, and the EU and was taken into solution with very high extraction efficiency (>95%). Additionally, oxygen partial pressure enhanced copper, cobalt, and zinc dissolution. When O2 was not introduced into the leaching system, the extraction efficiencies of Co, Cu, and Zn were approximately 24.5, 5.3, and 26.3%, respectively, after 2 h of leaching treatment.
Collapse
Affiliation(s)
- Abdullah Seyrankaya
- Department of Mining Engineering,
Mineral Processing Division, Dokuz Eylul
University Engineering Faculty, Buca, Izmir 35390, TÜRKİYE
| |
Collapse
|
4
|
Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules. SUSTAINABILITY 2022. [DOI: 10.3390/su14105987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The growing demand for energy and the environmental problems derived from this problem are arousing interest throughout the world in the development of clean and efficient alternative energy sources, which involve ecological processes and materials. The materials used in the processes associated with thermoelectric generation technology will provide solutions to this situation. Materials related to energy make it possible to generate energy from waste heat residues, which are derived from various industrial processes in which significant fractions of residual energy are deposited into the environment. However, despite the fact that thermoelectric technology represents some relative advantages in relation to other energy generation processes, it in turn faces some technical limitations such as its low efficiency with respect to the high costs that its implementation demands today, and this has been the subject of intense research in recent years. On the other hand, the sustainability of the processes when analyzed from a circular economy perspective must be taken into account for the implementation of this technology, particularly when considering its large-scale implementation. In this article, a systematic search focused on the sustainability of thermoelectric modules is carried out as a step towards a circular economy model. The review aims to examine recent developments and trends in the development of thermoelectric systems in order to promote initiatives in favor of the environment. The aim of this study is to present a current overview, including trends and limitations, in research related to thermoelectric materials. As a result of this analysis, it was found that aspects related to costs and initiatives related to circular economy models have been little explored, which represents not only an opportunity for the development of new approaches in the conception of thermoelectric systems, but also for the conception of optimized designs that address the current limitations of this technology.
Collapse
|
5
|
Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of Pseudomonas for bioremediation of oxyanions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:773-789. [PMID: 34369104 DOI: 10.1111/1758-2229.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Non-metal, metal and metalloid oxyanions occur naturally in minerals and rocks of the Earth's crust and are mostly found in low concentrations or confined in specific regions of the planet. However, anthropogenic activities including urban development, mining, agriculture, industrial activities and new technologies have increased the release of oxyanions to the environment, which threatens the sustainability of natural ecosystems, in turn affecting human development. For these reasons, the implementation of new methods that could allow not only the remediation of oxyanion contaminants but also the recovery of valuable elements from oxyanions of the environment is imperative. From this perspective, the use of microorganisms emerges as a strategy complementary to physical, mechanical and chemical methods. In this review, we discuss the opportunities that the Pseudomonas genus offers for the bioremediation of oxyanions, which is derived from its specialized central metabolism and the high number of oxidoreductases present in the genomes of these bacteria. Finally, we review the current knowledge on the transport and metabolism of specific oxyanions in Pseudomonas species. We consider that the Pseudomonas genus is an excellent starting point for the development of biotechnological approaches for the upcycling of oxyanions into added-value metal and metalloid byproducts.
Collapse
Affiliation(s)
- Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - José I Jiménez
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| |
Collapse
|
6
|
Kim K, Candeago R, Rim G, Raymond D, Park AHA, Su X. Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. iScience 2021; 24:102374. [PMID: 33997673 PMCID: PMC8091062 DOI: 10.1016/j.isci.2021.102374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Critical minerals are essential for the ever-increasing urban and industrial activities in modern society. The shift to cost-efficient and ecofriendly urban mining can be an avenue to replace the traditional linear flow of virgin-mined materials. Electrochemical separation technologies provide a sustainable approach to metal recovery, through possible integration with renewable energy, the minimization of external chemical input, as well as reducing secondary pollution. In this review, recent advances in electrochemically mediated technologies for metal recovery are discussed, with a focus on rare earth elements and other key critical materials for the modern circular economy. Given the extreme heterogeneity of hydrometallurgically-derived media of complex feedstocks, we focus on the nature of molecular selectivity in various electrochemically assisted recovery techniques. Finally, we provide a perspective on the challenges and opportunities for process intensification in critical materials recycling, especially through combining electrochemical and hydrometallurgical separation steps.
Collapse
Affiliation(s)
- Kwiyong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhe Rim
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Darien Raymond
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|