1
|
Xue H, Shi Y, Tian W, Cao M, Cao H, Na Z, Jiang G, Jin Z, Lang MF, Liu Y, Sun J. Silver Nanowires-Based Flexible Gold Electrode Overcoming Interior Impedance of Nanomaterial Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307328. [PMID: 38196157 DOI: 10.1002/smll.202307328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Indexed: 01/11/2024]
Abstract
In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.
Collapse
Affiliation(s)
- Hongsheng Xue
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Yacheng Shi
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Wenshuai Tian
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
- College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China
| | - Meng Cao
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Houyong Cao
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| | - Zhaolin Na
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| | - Ge Jiang
- College of Life and Health, Dalian University, Dalian, Liaoning, 116622, China
| | - Zhengmu Jin
- Dalian Ofei Electronics CO.,LTD., Dalian, Liaoning, 116021, China
| | - Ming-Fei Lang
- Medical College, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jing Sun
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| |
Collapse
|
2
|
Huang S, Song Y, Zhang JR, Chen X, Zhu JJ. Antibacterial Carbon Dots-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207385. [PMID: 36799145 DOI: 10.1002/smll.202207385] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emergence and global spread of bacterial resistance to conventionally used antibiotics have highlighted the urgent need for new antimicrobial agents that might replace antibiotics. Currently, nanomaterials hold considerable promise as antimicrobial agents in anti-inflammatory therapy. Due to their distinctive functional physicochemical characteristics and exceptional biocompatibility, carbon dots (CDs)-based composites have attracted a lot of attention in the context of these antimicrobial nanomaterials. Here, a thorough assessment of current developments in the field of antimicrobial CDs-based composites is provided, starting with a brief explanation of the general synthesis procedures, categorization, and physicochemical characteristics of CDs-based composites. The many processes driving the antibacterial action of these composites are then thoroughly described, including physical destruction, oxidative stress, and the incorporation of antimicrobial agents. Finally, the obstacles that CDs-based composites now suffer in combating infectious diseases are outlined and investigated, along with the potential applications of antimicrobial CDs-based composites.
Collapse
Affiliation(s)
- Shan Huang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yuexin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaojun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Zhu J, Zhang R, Zhu L, Liu X, Zhu T, Guo Z, Zhao Y. Laser-assisted synthesis of Au aerogel with high-index facets for ethanol oxidation. NANOTECHNOLOGY 2022; 33:225404. [PMID: 35180711 DOI: 10.1088/1361-6528/ac56bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Gold (Au) can be used as an ideal metal electrocatalyst for ethanol and glucose oxidation reactions due to its high performance-to-cost ratio. In this paper, the Au aerogel with high-index facets was synthesized by using the laser ablation in liquid technology, which can improve the electrocatalytic activity of Au. The as-prepared Au aerogel showed excellent mass activity and specific activity toward ethanol oxidation reaction, which are 4.6 times and 2.1 times higher than Au/C, respectively. The 3D porous nature and rich defect of the Au aerogel provide more active sites. In addition, the high-index facets with under-coordinated atoms enhance the adsorption of ethanol and glucose molecules, thus improving the intrinsic catalytic activity of Au aerogel. The effect of high-index facets has also been investigated by density functional theory calculations. Furthermore, the Au aerogels also show good electrocatalytic activity and stability toward glucose oxidation reaction. These results are conducive to promote the practical application of Au in electrocatalysis.
Collapse
Affiliation(s)
- Jiayin Zhu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Ran Zhang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Liye Zhu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xuan Liu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
- Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing 100124, People's Republic of China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing 100124, People's Republic of China
| | - Tiying Zhu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Ziang Guo
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yan Zhao
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
- Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing 100124, People's Republic of China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing 100124, People's Republic of China
| |
Collapse
|
4
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [PMID: 35060567 DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal-CD, nonmetallic inorganics-CD, and organics-CD as well as multi-components-CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|