1
|
Mosquera-Romero S, Ntagia E, Rousseau DP, Esteve-Núñez A, Prévoteau A. Water treatment and reclamation by implementing electrochemical systems with constructed wetlands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100265. [PMID: 37101565 PMCID: PMC10123341 DOI: 10.1016/j.ese.2023.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.
Collapse
Affiliation(s)
- Suanny Mosquera-Romero
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, BOX9050, Ecuador
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
| | - Diederik P.L. Rousseau
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Alcalá de Henares, Spain
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| |
Collapse
|
2
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|