1
|
Ezedinma U, Jones E, Ring A, Miller S, Ladhams A, Fjaagesund S, Downer T, Campbell G, Oprescu F. Short report on a distinct electroencephalogram endophenotype for MTHFR gene variation co-occurring in autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024:13623613241305721. [PMID: 39673442 DOI: 10.1177/13623613241305721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
LAY ABSTRACT Methylenetetrahydrofolate reductase mutations refer to genetic variations in the methylenetetrahydrofolate reductase enzyme, which plays an important role in folate metabolism. Folate is essential for neural development and signalling. Children with autism spectrum disorder have atypical neural signals compared with control. This study used a non-invasive method to identify a distinct neural signal that may be useful in future screening for methylenetetrahydrofolate reductase mutation in children with autism spectrum disorder. Given that the underlying causes of autism spectrum disorder have multiple genetic factors and often require subjective assessment, this study introduces a potential non-invasive screening method for methylenetetrahydrofolate reductase gene mutation. This method could provide valuable biomarkers for screening and personalised treatments, offering hope for improved risk stratification and bespoke nutritional support and supplements to mitigate the impact on affected individuals and their descendants.
Collapse
Affiliation(s)
- Uchenna Ezedinma
- Brain Treatment Centre Australia, Australia
- University of the Sunshine Coast, Australia
| | - Evan Jones
- Brain Treatment Centre Australia, Australia
- University of the Sunshine Coast, Australia
- Health Developments Corporation, Australia
| | | | - Spencer Miller
- Baylor Scott & White Health, USA
- Brain Treatment Center Dallas, USA
| | | | - Shauna Fjaagesund
- University of the Sunshine Coast, Australia
- Health Developments Corporation, Australia
- The University of Queensland, Australia
| | | | | | | |
Collapse
|
2
|
Gholamalizadeh H, Amiri-Shahri M, Rasouli F, Ansari A, Baradaran Rahimi V, Reza Askari V. DNA Methylation in Autism Spectrum Disorders: Biomarker or Pharmacological Target? Brain Sci 2024; 14:737. [PMID: 39199432 PMCID: PMC11352561 DOI: 10.3390/brainsci14080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disabilities with persistent impairments in cognition, communication, and social behavior. Although environmental factors play a role in ASD etiopathogenesis, a growing body of evidence indicates that ASD is highly inherited. In the last two decades, the dramatic rise in the prevalence of ASD has interested researchers to explore the etiologic role of epigenetic marking and incredibly abnormal DNA methylation. This review aimed to explain the current understanding of the association between changes in DNA methylation signatures and ASD in patients or animal models. We reviewed studies reporting alterations in DNA methylation at specific genes as well as epigenome-wide association studies (EWASs). Finally, we hypothesized that specific changes in DNA methylation patterns could be considered a potential biomarker for ASD diagnosis and prognosis and even a target for pharmacological intervention.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran;
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Maedeh Amiri-Shahri
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Fatemeh Rasouli
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Arina Ansari
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| |
Collapse
|
3
|
Fang Y, Cui Y, Yin Z, Hou M, Guo P, Wang H, Liu N, Cai C, Wang M. Comprehensive systematic review and meta-analysis of the association between common genetic variants and autism spectrum disorder. Gene 2023; 887:147723. [PMID: 37598788 DOI: 10.1016/j.gene.2023.147723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is neurodevelopmental disorder characterized by stereotyped behavior and deficits in communication and social interactions. To date, numerous studies have investigated the associations between genetic variants and ASD risk. However, the results of these published studies lack a clear consensus. In the present study, we performed a systematic review on the association between genetic variants and ASD risk. Meanwhile, we conducted a meta-analysis on available data to identify the association between the single nucleotide polymorphisms (SNPs) of candidate genes and ASD risk. METHODS We systematically searched public databases including English and Chinese from their inception to August 1, 2022. Two independent reviewers extracted data and assessed study quality. Odds ratio and 95 % confidence interval were used as effect indexes to evaluate the association between the SNPs of candidate genes and the risk of ASD. Heterogeneity was explored through subgroup, sensitivity, and meta-regression analyses. Publication bias was assessed by using Egger's and Begg's tests for funnel plot asymmetry. In addition, TSA analysis were performed to confirm the study findings. RESULTS We summarized 84 SNPs of 32 candidate genes from 81 articles included in the study. Subsequently, we analyzed 16 SNPs of eight genes by calculating pooled ORs, and identified eight significant SNPs of contactin associated protein 2 (CNTNAP2), methylentetrahydrofolate reductase (MTHFR), oxytocin receptor (OXTR), and vitamin D receptor (VDR). Results showed that seven SNPs, including the CNTNAP2 rs2710102 (homozygote, heterozygote, dominant and allelic models) and rs7794745 (heterozygote and dominant models), MTHFR C677T (homozygote, heterozygote, dominant, recessive and allelic models) and A1298C (dominant and allelic models), OXTR rs2254298 (homozygote and recessive models), VDR rs731236 (homozygote, dominant, recessive and allelic models) and rs2228570 (homozygote and recessive models), were showed to be correlated with an increased ASD risk. By contrast, the VDR rs7975232 was correlated with a decreased the risk of ASD under the homozygote and allelic models. CONCLUSION Our study summarized research evidence on the genetic variants of ASD and provides a broad and detailed overview of ASD risk genes. The C677T and A1298C polymorphisms of MTHFR, rs2710102 and rs7794745 polymorphisms of CNTNAP2, rs2254298 polymorphism of OXTR, and rs731236 and rs2228570 polymorphisms of VDR were genetic risk factors. The rs7975232 polymorphism of VDR was a genetic protective factor for ASD. Our study provides novel clues to clinicians and healthcare decision-makers to predict ASD susceptibility.
Collapse
Affiliation(s)
- Yulian Fang
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mengzhu Hou
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Nan Liu
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute of Environment and Health, South China Hospital, Medical School, Shenzhen 518116, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Mingbang Wang
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong 518116, China; Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
4
|
Sadigurschi N, Scrift G, Hirrlinger J, Golan HM. Genetic impairment of folate metabolism regulates cortical interneurons and social behavior. Front Neurosci 2023; 17:1203262. [PMID: 37449270 PMCID: PMC10338116 DOI: 10.3389/fnins.2023.1203262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The implications of folate deficiency in neuropsychiatric disorders were demonstrated in numerous studies. Genetic deficiency in a key folate metabolism enzyme, MTHFR, is an example of the interaction between genetic and environmental risk factors: the maternal MTHFR deficiency governs in-utero nutrient availability, and the embryo's Mthfr genotype influences its ability to metabolize folates. Here, we explore how the maternal and offspring Mthfr genotypes affect cortical interneuron densities and distributions, mouse social outcome, and the relation of the different interneuron patterns to cortical excitability. Methods Two experiments were conducted to examine the effects of maternal and offspring Mthfr-KO heterozygosity. Mice were tested for direct social interactions (DSIs), repetitive behavior and cortical laminar distribution of interneuron populations expressing glutamate-decarboxylase-65, parvalbumin and somatostatin. Susceptibility to seizure was tested by exposure to pentylenetetrazole (PTZ). Results Maternal Mthfr+/- genotype was associated with suppressed social activities and reduced interneuron densities in all layers of the retrosplenial cortex (RSC). Somatostatin density and the somatostatin/parvalbumin ratio in the RSC and frontal cortex positively correlated with social behavior in the mice. An interaction between maternal and offspring Mthfr genotypes resulted in higher susceptibility of wild-type offspring to PTZ induced seizure. Discussion Maternal folate metabolism was shown to be critical to interneuron ontogenesis. Our results demonstrate that interneurons have a specific susceptibility to folate deficiency that may mediate folate's involvement in neuropsychiatric disease. The relations between cortical somatostatin interneuron patterns and social behavior highlight this subpopulation of interneurons as a target for further research.
Collapse
Affiliation(s)
- Noa Sadigurschi
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gilad Scrift
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hava M. Golan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
5
|
Gowda VK, Srinivasan VM. A Treatable Cause of Global Developmental Delay with Autism Spectrum Disorder Due to Cobalamin Related Remethylation Disorder. Indian J Pediatr 2022; 89:832. [PMID: 35604587 DOI: 10.1007/s12098-022-04221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, 560029, India.
| | - Varunvenkat M Srinivasan
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, 560029, India
| |
Collapse
|
6
|
Implications of Genetic Factors and Modifiers in Autism Spectrum Disorders: a Systematic Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Rodriguez-Gomez DA, Garcia-Guaqueta DP, Charry-Sánchez JD, Sarquis-Buitrago E, Blanco M, Velez-van-Meerbeke A, Talero-Gutiérrez C. A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci 2021; 22:60. [PMID: 34627165 PMCID: PMC8501721 DOI: 10.1186/s12868-021-00662-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social communication and interaction. Common genetic variation appears to play a key role in the development of this condition. In this systematic review, we describe the relationship between genetic variations and autism. We created a gene dataset of the genes involved in the pathogenesis of autism and performed an over-representation analysis to evaluate the biological functions and molecular pathways that may explain the associations between these variants and the development of ASD. Results 177 studies and a gene set composed of 139 were included in this qualitative systematic review. Enriched pathways in the over-representation analysis using the KEGG pathway database were mostly associated with neurotransmitter receptors and their subunits. Major over-represented biological processes were social behavior, vocalization behavior, learning and memory. The enriched cellular component of the proteins encoded by the genes identified in this systematic review were the postsynaptic membrane and the cell junction. Conclusions Among the biological processes that were examined, genes involved in synaptic integrity, neurotransmitter metabolism, and cell adhesion molecules were significantly involved in the development of autism. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00662-z.
Collapse
Affiliation(s)
- Diego Alejandro Rodriguez-Gomez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Danna Paola Garcia-Guaqueta
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Jesús David Charry-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Elias Sarquis-Buitrago
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Mariana Blanco
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Alberto Velez-van-Meerbeke
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia. .,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.
| |
Collapse
|
8
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
9
|
Forster J, Duis J, Butler MG. Pharmacodynamic Gene Testing in Prader-Willi Syndrome. Front Genet 2020; 11:579609. [PMID: 33329716 PMCID: PMC7715001 DOI: 10.3389/fgene.2020.579609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder with a complex neurobehavioral phenotype associated with considerable psychiatric co-morbidity. This clinical case series, for the first time, describes the distribution and frequency of polymorphisms of pharmacodynamic genes (serotonin transporter, serotonin 2A and 2C receptors, catechol-o-methyltransferase, adrenergic receptor 2A, methylene tetrahydrofolate reductase, and human leucocytic antigens) across the two major molecular classes of PWS in a cohort of 33 referred patients who met medical criteria for testing. When results were pooled across PWS genetic subtypes, genotypic and allelic frequencies did not differ from normative population data. However, when the genetic subtype of PWS was examined, there were differences observed across all genes tested that may affect response to psychotropic medication. Due to small sample size, no statistical significance was found, but results suggest that pharmacodynamic gene testing should be considered before initiating pharmacotherapy in PWS. Larger scale studies are warranted.
Collapse
Affiliation(s)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Merlin G. Butler
- Division of Research and Genetics, Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Frye RE, Rossignol DA, Scahill L, McDougle CJ, Huberman H, Quadros EV. Treatment of Folate Metabolism Abnormalities in Autism Spectrum Disorder. Semin Pediatr Neurol 2020; 35:100835. [PMID: 32892962 PMCID: PMC7477301 DOI: 10.1016/j.spen.2020.100835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that currently has no approved medical therapy to address core symptoms or underling pathophysiological processes. Several compounds are under development that address both underlying pathophysiological abnormalities and core ASD symptoms. This article reviews one of these treatments, d,l-leucovorin calcium (also known as folinic acid) for treatment of folate pathway abnormalities in children with ASD. Folate is a water-soluble B vitamin that is essential for normal neurodevelopment and abnormalities in the folate and related pathways have been identified in children with ASD. One of these abnormalities involves a partial blockage in the ability of folate to be transported into the brain utilizing the primary transport mechanism, the folate receptor alpha. Autoantibodies which interfere with the function of the folate receptor alpha called folate receptor alpha autoantibodies have been identified in 58%-76% of children with ASD and independent studies have demonstrated that blood titers of these autoantibodies correlate with folate levels in the cerebrospinal fluid. Most significantly, case-series, open-label, and single and double-blind placebo-controlled studies suggest that d,l-leucovorin, a reduced folate that can bypass the blockage at the folate receptor alpha by using the reduced folate carrier, an alternate pathway, can substantially improve particular symptoms in children with ASD, especially those positive for folate receptor alpha autoantibodies. This article reviews the current evidence for treating core and associated symptoms and underlying pathophysiological mechanisms in children with ASD with d,l-leucovorin.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | | | - Lawrence Scahill
- Department of Pediatrics, Emory University and Marcus Autism Center, Atlanta, GA
| | - Christopher J. McDougle
- Department of Psychiatry, Harvard Medical School, Boston MA and Lurie Center for Autism, Lexington, MA
| | - Harris Huberman
- Departments of Pediatrics, State University of New York – Downstate, Brooklyn, NY
| | - Edward V. Quadros
- Departments of Medicine, State University of New York – Downstate, Brooklyn, NY
| |
Collapse
|
11
|
Li Y, Qiu S, Shi J, Guo Y, Li Z, Cheng Y, Liu Y. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr 2020; 20:449. [PMID: 32972375 PMCID: PMC7517654 DOI: 10.1186/s12887-020-02330-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/03/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is becoming increasingly prevalent of late. Methylenetetrahydrofolate reductase (MTHFR) has a significant role in folate metabolism. Owing to the inconsistencies and inconclusiveness on the association between MTHFR single nucleotide polymorphism (SNP) and ASD susceptibilities, a meta-analysis was conducted to settle the inconsistencies. METHODS For this meta-analysis, a total of 15 manuscripts published up to January 26, 2020, were selected from PubMed, Google Scholar, Medline, WangFang, and CNKI databases using search terms "MTHFR" OR "methylenetetrahydrofolate reductase" AND "ASD" OR "Autism Spectrum Disorders" OR "Autism" AND "polymorphism" OR "susceptibility" OR "C677T" OR "A1298C". RESULTS The findings of the meta-analysis indicated that MTHFR C677T polymorphism is remarkably associated with ASD in the five genetic models, viz., allelic, dominant, recessive, heterozygote, and homozygote. However, the MTHFR A1298C polymorphism was not found to be significantly related to ASD in the five genetic models. Subgroup analyses revealed significant associations of ASD with the MTHFR (C677T and A1298C) polymorphism. Sensitivity analysis showed that this meta-analysis was stable and reliable. No publication bias was identified in the associations between MTHFRC677T polymorphisms and ASD in the five genetic models, except for the one with regard to the associations between MTHFRA1298C polymorphisms and ASD in the five genetic models. CONCLUSION This meta-analysis showed that MTHFR C677T polymorphism is a susceptibility factor for ASD, and MTHFR A1298C polymorphism is not associated with ASD susceptibility.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Agam G, Taylor Z, Vainer E, Golan HM. The influence of choline treatment on behavioral and neurochemical autistic-like phenotype in Mthfr-deficient mice. Transl Psychiatry 2020; 10:316. [PMID: 32948746 PMCID: PMC7501861 DOI: 10.1038/s41398-020-01002-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Imbalanced one carbon metabolism and aberrant autophagy is robustly reported in patients with autism. Polymorphism in the gene methylenetetrahydrofolate reductase (Mthfr), encoding for a key enzyme in this pathway is associated with an increased risk for autistic-spectrum-disorders (ASDs). Autistic-like core and associated behaviors have been described, with contribution of both maternal and offspring Mthfr+/- genotype to the different domains of behavior. Preconception and prenatal supplementation with methyl donor rich diet to human subjects and mice reduced the risk for developing autism and autistic-like behavior, respectively. Here we tested the potential of choline supplementation to Mthfr-deficient mice at young-adulthood to reduce behavioral and neurochemical changes reminiscent of autism characteristics. We show that offspring of Mthfr+/- mothers, whether wildtype or heterozygote, exhibit autistic-like behavior, altered brain p62 protein levels and LC3-II/LC3-I levels ratio, both, autophagy markers. Choline supplementation to adult offspring of Mthfr+/- mothers for 14 days counteracted characteristics related to repetitive behavior and anxiety both in males and in females and improved social behavior solely in male mice. Choline treatment also normalized deviant cortical levels of the autophagy markers measured in male mice. The results demonstrate that choline supplementation even at adulthood, not tested previously, to offspring of Mthfr-deficient mothers, attenuates the autistic-like phenotype. If this proof of concept is replicated it might promote translation of these results to treatment recommendation for children with ASDs bearing similar genetic/metabolic make-up.
Collapse
Affiliation(s)
- Galila Agam
- grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zoe Taylor
- grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ella Vainer
- grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel
| | - Hava M. Golan
- grid.7489.20000 0004 1937 0511Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Piras IS, Costa A, Tirindelli MC, Stoccoro A, Huentelman MJ, Sacco R, Coppedè F, Lintas C. Genetic and epigenetic MTHFR gene variants in the mothers of attention-deficit/hyperactivity disorder affected children as possible risk factors for neurodevelopmental disorders. Epigenomics 2020; 12:813-823. [PMID: 32485115 DOI: 10.2217/epi-2019-0356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To assess promoter methylation levels, gene expression levels and 677C>T/1298A>C genotype and allele frequencies of the MTHFR gene in 45 mothers of attention-deficit/hyperactivity disorder affected child/children (ADHDM) and compare it with age matched healthy control mothers (HCM). Materials & methods: High resolution melting analysis, quantitative real time PCR and PCR-RFLP were performed to assess methylation, gene expression and genotyping, respectively. Significance between ADHDM and HCM was assessed by linear (methylation and gene expression) and logistic regression (genotypes). Results: MTHFR gene expression levels were significantly higher in the ADHDM compared with the HCM group (adj-p < 7.7E-04). No differences in MTHFR promoter methylation level and 677C>T/1298A>C genotype frequencies were detected between ADHDM and HCM. Conclusion: We observed increased MTHFR expression levels not resulting from promoter methylation changes in ADHDM respect to HMC, potentially contributing to the ADHD condition in their children and deserving further investigation.
Collapse
Affiliation(s)
- Ignazio Stefano Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Anna Costa
- Service for Neurodevelopmental Disorders, University Campus Bio-Medico, Rome, Italy
| | | | - Andrea Stoccoro
- Medical Genetics Laboratory, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders, University Campus Bio-Medico, Rome, Italy
| | - Fabio Coppedè
- Medical Genetics Laboratory, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Carla Lintas
- Service for Neurodevelopmental Disorders, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
14
|
|
15
|
New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:43-81. [PMID: 32006356 DOI: 10.1007/978-3-030-30402-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research.
Collapse
|
16
|
Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian J Psychiatr 2019; 46:54-61. [PMID: 31614268 DOI: 10.1016/j.ajp.2019.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 12/30/2022]
Abstract
Several studies have investigated association of MTHFR 677C > T and 1298A > C polymorphisms with risk of autism, but they have reported controversial and inconclusive results. The present meta-analysis was designed to evaluate association of MTHFR 677C > T and 1298A > C polymorphisms with risk of autism. A comprehensive literature search was done in PubMed, EMBASE, and CNKI databases to identify all eligible publications up to April 01, 2019. Finally, 25 case-control studies including 18 studies on MTHFR 677C > T and 7 studies on MTHFR 1298A > C polymorphism were selected. Overall, a significant association was found between MTHFR 677C > T and an increased risk of autism under all five genetic models (T vs. C: OR = 1.483, 95% CI 1.188-1.850, p ≤ 0.001; TT vs. CC: OR = 1.834, 95% CI 1.155-2.913, p = 0.010; TC vs. CC: OR = 1.512, 95% CI 1.101-2.078, p = 0.011; TT + TC vs. CC: OR = 1.632, 95% CI 1.261-2.113, p ≤ 0.001; and TT vs. TC + CC: OR = 1.427, 95% CI 1.002-2.032, p = 0.049). However, no significant association was found between MTHFR 1298A > C and autism risk. Stratified analyses showed that MTHFR 677C > T and 1298A > C polymorphisms are involved in genetic susceptibility of autism by ethnicity. Results of this meta-analysis indicated that MTHFR 677C > T polymorphism may be associated with increased risk of autism in overall and by ethnicity, while MTHFR 1298A > C was reported to be significantly associated with the risk of autism only in Caucasians. MTHFR polymorphisms could be used as a diagnostic marker for autism with respect to ethnicity background.
Collapse
|
17
|
Ismail S, Senna AA, Behiry EG, Ashaat EA, Zaki MS, Ashaat NA, Salah DM. Study of C677T variant of methylene tetrahydrofolate reductase gene in autistic spectrum disorder Egyptian children. Am J Med Genet B Neuropsychiatr Genet 2019; 180:305-309. [PMID: 31033224 DOI: 10.1002/ajmg.b.32729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) is a heterogeneous neurodevelopmental disease, various articles reported that dysfunctional folate-methionine pathway enzymes might assume a paramount part in the pathophysiology of autism. Methylene tetrahydrofolate reductase (MTHFR) is a basic catalyst for this pathway, also MTHFR gene C677T variant accounted as a risk factor of autism. OBJECTIVE The present study aimed to investigate the association of MTHFR gene rs1801133(C677T) variant among Egyptian autistic children. METHODS The study included 78 autistic children, and 80 matched healthy control children. Full clinical and radiological examinations were conducted. MTHFR genetic variant, rs1801133(C677T) was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods followed by direct sequencing technique. RESULTS MTHFR (C677T) allele frequency was found to be higher significantly in ASD cases compared with nonautistic children. Also, we had a higher distribution of combined CT + TT genotypes among autistic patients with consanguinity and family history of psychological disease. In Gastrointestinal tract (GIT) and sleep disorders showed a higher distribution of hetero CT genotype as well as combined CT + TT genotypes. CONCLUSION This study demonstrated a role of MTHFR gene (C667T) variant with the increased risk for ASD.
Collapse
Affiliation(s)
- Samira Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Azza Abo Senna
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Eman G Behiry
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Neveen A Ashaat
- Genetics-Zoology Department, Faculty of women for science, Ain Shams University, Cairo, Egypt
| | - Dina M Salah
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
18
|
Orenbuch A, Fortis K, Taesuwan S, Yaffe R, Caudill MA, Golan HM. Prenatal Nutritional Intervention Reduces Autistic-Like Behavior Rates Among Mthfr-Deficient Mice. Front Neurosci 2019; 13:383. [PMID: 31133774 PMCID: PMC6511811 DOI: 10.3389/fnins.2019.00383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
The causes and contributing factors of autism spectrum disorders (ASD) are poorly understood. One gene associated with increased risk for ASD is methylenetetrahydrofolate-reductase (MTHFR), which encodes a key enzyme in one carbon (C1) metabolism. The MTHFR 677C > T polymorphism reduces the efficiency of methyl group production with possible adverse downstream effects on gene expression. In this study, the effects of prenatal and/or postnatal diets enriched in C1 nutrients on ASD-like behavior were evaluated in Mthfr-deficient mice. Differences in intermediate pathways between the mice with and without ASD-like behaviors were tested. The findings indicate that maternal and offspring Mthfr deficiency increased the risk for an ASD-like phenotype in the offspring. The risk of ASD-like behavior was reduced in Mthfr-deficient mice supplemented with C1 nutrients prenatally. Specifically, among offspring of Mthfr+/- dams, prenatal diet supplementation was protective against ASD-like symptomatic behavior compared to the control diet with an odds ratio of 0.18 (CI:0.035, 0.970). Changes in major C1 metabolites, such as the ratios between betaine/choline and SAM/SAH in the cerebral-cortex, were associated with ASD-like behavior. Symptomatic mice presenting ASD-like behavior showed decreased levels of GABA pathway proteins such as GAD65/67 and VGAT and altered ratios of the glutamate receptor subunits GluR1/GluR2 in males and NR2A/NR2B in females. The altered ratios, in turn, favor receptor subunits with higher sensitivity to neuronal activity. Our study suggests that MTHFR deficiency can increase the risk of ASD-like behavior in mice and that prenatal dietary intervention focused on MTHFR genotypes can reduce the risk of ASD-like behavior.
Collapse
Affiliation(s)
- Ayelet Orenbuch
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Keren Fortis
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siraphat Taesuwan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Raz Yaffe
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Hava M Golan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
19
|
Arab AH, Elhawary NA. Methylenetetrahydrofolate Reductase Gene Variants Confer Potential Vulnerability to Autism Spectrum Disorder in a Saudi Community. Neuropsychiatr Dis Treat 2019; 15:3569-3581. [PMID: 31920317 PMCID: PMC6938732 DOI: 10.2147/ndt.s230348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Several interacting genes or single nucleotide polymorphisms (SNPs) are vulnerable to the risk of autism spectrum disorder (ASD). Here we explored associations between SNPs in the methylenetetrahydrofolate reductase (MTHFR) gene or combined genotypes and the risk of ASD in a Saudi community. SUBJECTS AND METHODS ASD severity symptoms were assessed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) criteria and scores on the childhood autism rating scale (CARS). Genomic DNA from buccal cells was analyzed for 112 cases and 104 healthy controls using TaqMan genotyping assays of 677C>T rs1801133 and 1298A>C rs1801131 SNPs in the MTHFR gene. SNPStats software was utilized to determine the best interactive model of inheritance of genotypic data. RESULTS Controls were consistent with Hardy-Weinberg equilibrium in the examined SNPs. Our data showed associations between the 677C>T and 1298A>C SNPs and ASD risk (odds ratio [OR]= 5.2; 95% confidence interval [CI], 3.1-9.8 and OR= 22.2; 95% CI, 7.9-62.3, respectively). Genotype associations of 677C>T and 1298A>C were identified in cases compared with controls (P= 0.0012 and P= 0.0008, respectively). The examined SNPs were significantly associated with ASD cases having ≥37 scores (codominant and recessive models; P= 0.001 and P= 0.0005, respectively). Six combined genotypes-C/C-A/A (42.9%), C/T-A/A (17.9%), C/T-C/C (14.5%), C/T-A/C (10.9%), T/T-C/C (10.9%), and T/T-A/A (3.6%)-were found in ASD cases. Global haplotype analysis showed a significant difference in haplotype distribution between cases and controls (P= 0.00057). The two SNPs were found to be in relatively strong linkage disequilibrium (D`= 0.63, r 2= 0.260). CONCLUSION Our findings suggest that the 677C>T and 1298A>C SNPs add to each other for potential vulnerability to increase the risk of ASD, particularly if they can be confirmed in larger cohorts along with other genetic/environmental factors. Our study could create reference data for future genetic association studies in the Saudi population and for use by government and health experts to develop regional health management programs.
Collapse
Affiliation(s)
- Arwa H Arab
- Department of Psychology, Faculty of Arts and Humanities, King Abdul-Aziz University, Jeddah21589, Saudi Arabia
- Correspondence: Arwa H Arab; Nasser A Elhawary Tel +966 55 369 2180 Email ;
| | - Nasser A Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca21955, Saudi Arabia
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo11566, Egypt
- Correspondence: Arwa H Arab; Nasser A Elhawary Tel +966 55 369 2180 Email ;
| |
Collapse
|
20
|
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2018; 66:492-511. [DOI: 10.1007/s12031-018-1192-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
21
|
Lintas C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 2018; 95:241-252. [PMID: 30047142 DOI: 10.1111/cge.13421] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
There is growing evidence that epigenetic dysregulation plays a role in neurodevelopmental disorders. In humans, folate is one of the main donors of the methyl group required for the synthesis of S-adenosylmethionine, which in turn is needed for DNA and histone methylation as key neurodevelopment processes. Folate deficiency during pregnancy has been correlated with neural tube defects and with a higher incidence of neurocognitive and/or neurobehavioral deficits. A similar outcome may be exerted by gene polymorphisms in folate or folate-related pathways. This has been documented by numerous case/control association studies performed on neurodevelopmental disorders such as autism spectrum disorder and attention deficit hyperactivity disorder. In this regard, the folate cycle represents a "perfect model" of how genetics influences epigenetics. Gene variants in folate and folate-related pathways can be considered risk factors for neurodevelopmental disorders and should therefore be assessed by genetic testing in pregnant women. High-risk women should be considered for folate supplementation during pregnancy. Here, we review all published case/control association studies on gene polymorphisms in folate and folate-related pathways performed on neurodevelopmental disorders, provide an overview of neurodevelopment and DNA methylation changes occurring at this time, and describe the biological basis of neurodevelopmental disorders and recent evidence of their epigenetic dysregulation.
Collapse
Affiliation(s)
- C Lintas
- Service for Neurodevelopmental Disorders, Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
22
|
Frye RE. Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs 2018; 32:713-734. [PMID: 30105528 PMCID: PMC6105175 DOI: 10.1007/s40263-018-0556-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is defined by two core symptoms: a deficit in social communication and the presence of repetitive behaviors and/or restricted interests. Currently, there is no US Food and Drug Administration-approved drug for these core symptoms. This article reviews the biological origins of the social function deficit associated with autism spectrum disorder and the drug therapies with the potential to treat this deficit. A review of the history of autism demonstrates that a deficit in social interaction has been the defining feature of the concept of autism from its conception. Abnormalities identified in early social skill development and an overview of the pathophysiology abnormalities associated with autism spectrum disorder are discussed as are the abnormalities in brain circuits associated with the social function deficit. Previous and ongoing clinical trials examining agents that have the potential to improve social deficits associated with autism spectrum disorder are discussed in detail. This discussion reveals that agents such as oxytocin and propranolol are particularly promising and undergoing active investigation, while other agents such as vasopressin agonists and antagonists are being activity investigated but have limited published evidence at this time. In addition, agents such as bumetanide and manipulation of the enteric microbiome using microbiota transfer therapy appear to have promising effects on core autism spectrum disorder symptoms including social function. Other pertinent issues associated with developing treatments in autism spectrum disorder, such as disease heterogeneity, high placebo response rates, trial design, and the most appropriate way of assessing effects on social skills (outcome measures), are also discussed.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
23
|
Berrett AN, Gale SD, Erickson LD, Brown BL, Hedges DW. Helicobacter pylori moderates the association between 5-MTHF concentration and cognitive function in older adults. PLoS One 2018; 13:e0190475. [PMID: 29364915 PMCID: PMC5783346 DOI: 10.1371/journal.pone.0190475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/11/2017] [Indexed: 01/02/2023] Open
Abstract
Objective To explore potential interactions between folate-cycle factors and Helicobacter pylori seropositivity in the prediction of cognitive function. Methods We used data obtained from the 1999–2000 continuous National Health and Nutrition Examination Survey produced by the United States’ Centers for Disease Control and Prevention. Using Ordinary Least Squares regression, we tested for associations between multiple folate-cycle factors, Helicobacter pylori seropositivity, and cognitive function assessed by the digit symbol coding subtest of the Wechsler Adult Intelligence Scale-III. We then tested for interactions between each of the folate-cycle factors and Helicobacter pylori in the prediction of cognitive function. Results Although Helicobacter pylori seropositivity, 5-methyltetrahydrofolate, vitamin B-12, and homocysteine were not associated with performance on the digit symbol coding task, Helicobacter pylori seropositivity interacted with 5-methyltetrahydrofolate concentration to predict performance on the digit symbol coding task. The Helicobacter pylori seropositive group performed worse on the digit symbol coding task as 5-methyltetrahydrofolate concentration decreased. Conclusion The interaction between Helicobacter pylori seropositivity and reduced folate-cycle factor 5-methyltetrahydrofolate might impair aspects of cognitive function.
Collapse
Affiliation(s)
- Andrew N Berrett
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America
| | - Shawn D Gale
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America
- The Neuroscience Center, Brigham Young University, Provo, Utah, United States of America
| | - Lance D Erickson
- Department of Sociology, Brigham Young University, Provo, Utah, United States of America
| | - Bruce L Brown
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America
| | - Dawson W Hedges
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America
- The Neuroscience Center, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
24
|
Zhang Z, Yu L, Li S, Liu J. Association Study of Polymorphisms in Genes Relevant to Vitamin B12 and Folate Metabolism with Childhood Autism Spectrum Disorder in a Han Chinese Population. Med Sci Monit 2018; 24:370-376. [PMID: 29348398 PMCID: PMC5785951 DOI: 10.12659/msm.905567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Both genetic and environmental factors play a role in the development of autism spectrum disorder (ASD). This case-control study examined the association between childhood ASD and single-nucleotide polymorphisms (SNPs) in genes involved with vitamin B12 and folate metabolism. Material/Methods Genotypes of transcobalamin 2 (TCN2) rs1801198, methionine synthase (MTR) rs1805087, methionine synthase reductase (MTRR) rs1801394, and methylene tetrahydrofolate reductase (MTHFR) rs1801133 were examined in 201 children with ASD and 200 healthy controls from the Han Chinese population. Results Our results showed no association of all examined SNPs with childhood ASD and its severity. Conclusions None of the examined SNPs were a risk factor for the susceptibility to childhood ASD and severity of the disease in a Han Chinese population.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Pediatrics, Xiaoshan First People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Lianfang Yu
- Department of Pediatrics, Xiaoshan First People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Sufang Li
- Department of Pediatrics, Xiaoshan First People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jun Liu
- Clinical Laboratory, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
25
|
El-Baz F, El-Aal MA, Kamal TM, Sadek AA, Othman AA. Study of the C677T and 1298AC polymorphic genotypes of MTHFR Gene in autism spectrum disorder. Electron Physician 2017; 9:5287-5293. [PMID: 29038711 PMCID: PMC5633227 DOI: 10.19082/5287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022] Open
Abstract
Background Autism is currently known as “a behaviorally defined syndrome” manifested as impairment in social communication, repetitive routines and restricted interests. There is an increased risk of ASDs associated with common mutations affecting the folate/methylation cycle. Aim The aim of this study was to identify C677T and 1298AC polymorphic genotypes of MTHFR gene among a sample of Egyptian children with autism and to make a phenotype-genotype correlation for the autistic patients. Methods This case-control study was carried out from 2013 through 2015. The study included 31 children with autism and 39 children in a normal control group, the mean age of patients and control was comparable (4.5 years± 2) with males predominant in both groups. We used DSM-V-TR criteria, Stanford-Binet intelligence scale V and childhood autism rating scale (CARS) for assessments. Genotyping for MTHFR gene polymorphic loci C677T and 1298AC was performed on amplified DNA by PCR with subsequent reverse hybridization and restriction fragment length polymorphisms analysis. Data were analyzed by SPSS version 11, using Chi-Square, independent-samples t-test, and ANOVA. Results There was significant relationship between low birth weight and occurrence of autism (p<0.01), and between delayed motor and social milestones in cases of autism compared to controls (p<0.01). Heterozygosity for A1298C polymorphism was highest among patients (41.9%) followed by 35.5% mutant genotype CC and 22.6% normal AA (wild) type and Allele C was detected in patients more than in control (56.45% vs. 11.54%) (p<0.001). For C667T polymorphism, heterozygosity was also highest among patients (48.4%) followed by wild type genotypes C677 (38.7%) and 12.9% for mutant genotypes 667T. Allele T appeared more in patients than control (31.10 %vs. 5.13%) (p<0.00). Heterozygosity for CT and A–C genotypes were detected equally (46.2%) among patients with severe autism (according to CARS). Conclusion There is a significant association between severity and occurrence of autism with MTHFR gene polymorphisms C677T and A1298C. Further studies are needed on a larger scale to explore other genes polymorphisms that may be associated with autism, to correlate the genetic basis of autism.
Collapse
Affiliation(s)
- Farida El-Baz
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Egypt
| | - Mohammed Abd El-Aal
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tarek Moustafa Kamal
- Medical Genetics Research Centre and Genetics Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Egypt
| | - Abdelrahim Abdrabou Sadek
- Neurology and Psychiatry Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Amr Ahmed Othman
- Neurology and Psychiatry Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
26
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
27
|
Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr Genet 2016; 26:281-286. [DOI: 10.1097/ypg.0000000000000152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis 2016; 31:727-35. [PMID: 26956130 DOI: 10.1007/s11011-016-9815-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023]
Abstract
Autism (MIM 209850) is a heterogeneous neurodevelopmental disease that manifests within the first 3 years of life. Numerous articles reported that dysfunctional folate-methionine pathway enzymes may play an important role in the pathophysiology of autism. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme of this pathway and MTHFR C677T polymorphism reported as risk factor for autism in several case control studies. However, controversial reports were also published. Hence the present meta-analysis was designed to investigate the relationship of the MTHFR C677T polymorphism with the risk of autism. Electronic databases were searched for case control studies with following search terms - 'MTHFR', 'C677T', in combination with 'Autism'. Pooled OR with its corresponding 95 % CI was calculated and used as association measure to investigate the association between MTHFR C677T polymorphism and risk of autism. Total of thirteen studies were found suitable for the inclusion in the present meta-analysis, which comprises 1978 cases and 7257 controls. Meta-analysis using all four genetic models showed significant association between C677T polymorphism and autism (ORTvs.C = 1.48; 95 % CI: 1.18-1.86; P = 0.0007; ORTT + CT vs. CC = 1.70, 95 % CI = 0.96-2.9, p = 0.05; ORTT vs. CC = 1.84, 95 % CI = 1.12-3.02, p = 0.02; ORCT vs.CC = 1.60, 95 % CI = 1.2-2.1, p = 0.003; ORTT vs.CT+CC = 1.5, 95 % CI = 1.02-2.2, p = 0.03). In total 13 studies, 9 studies were from Caucasian population and 4 studies were from Asian population. The association between C677T polymorphism and autism was significant in Caucasian (ORTvs.C = 1.43; 95 % CI = 1.1-1.87; p = 0.009) and Asian population (ORTvs.C = 1.68; 95 % CI = 1.02-2.77; p = 0.04) using allele contrast model. In conclusion, present meta-analysis strongly suggested a significant association of the MTHFR C677T polymorphism with autism.
Collapse
Affiliation(s)
- Vandana Rai
- VBS Purvanchal University, Jaunpur, 222003, UP, India.
| |
Collapse
|
29
|
Frye RE, Rossignol DA. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2016; 10:43-56. [PMID: 27330338 PMCID: PMC4910649 DOI: 10.4137/cmped.s38337] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA.; Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
30
|
Zuckerman C, Blumkin E, Melamed O, Golan HM. Glutamatergic synapse protein composition of wild-type mice is sensitive to in utero MTHFR genotype and the timing of neonatal vigabatrin exposure. Eur Neuropsychopharmacol 2015; 25:1787-802. [PMID: 26235956 DOI: 10.1016/j.euroneuro.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 06/06/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
Abstract
The enzyme methylenetetrahydrofolate-reductase (MTHFR) is part of the homocysteine and folate metabolic pathways. In utero, Mthfr-deficient environment has been reported as a risk factor for neurodevelopmental disorders such as autism and neural tube defects. Neonatal disruption of the GABAergic system is also associated with behavioral outcomes. The interaction between Mthfr deficiency and neonatal exposure to the GABA-potentiating drug vigabatrin (GVG) in mice alters anxiety, memory, and social behavior in a gender-dependent manner. In addition, a gender-dependent enhancement of proteins implicated in excitatory synapse plasticity in the cerebral cortex was shown. Here we show that in utero MTHFR deficiency is sufficient to alter the levels of glutamate receptor subunits GluR1, GluR2, and NR2B in the cerebral cortex and hippocampus of adult offspring with a WT genotype. In addition, FMRP1, CAMKII α and γ, and NLG1 levels in WT offspring were vulnerable to the in utero genotype. These effects depend on brain region and the cellular compartment tested. The effect of in utero MTHFR deficiency varies with the age of neonatal GVG exposure to modify GluR1, NR2A, reelin, CAMKII α, and NLG1 levels. These changes in molecular composition of the glutamatergic synapse were associated with increased anxiety-like behavior. Complex, multifactorial disorders of the nervous system show significant association with several genetic and environmental factors. Our data exemplify the contribution of an in utero MTHFR-deficient environment and early exposure to an antiepileptic drug to the basal composition of the glutamatergic synapses. The robust effect is expected to alter synapse function and plasticity and the cortico-hippocampal circuitry.
Collapse
Affiliation(s)
- Chava Zuckerman
- Department of Physiology and Cellular Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elinor Blumkin
- Department of Physiology and Cellular Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Osnat Melamed
- Department of Physiology and Cellular Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hava M Golan
- Department of Physiology and Cellular Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
31
|
Hua R, Wei M, Zhang C. The complex genetics in autism spectrum disorders. SCIENCE CHINA-LIFE SCIENCES 2015; 58:933-45. [PMID: 26335739 DOI: 10.1007/s11427-015-4893-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders (ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants (CNVs), linkage regions, and microRNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - MengPing Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Frye RE. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav 2015; 47:147-57. [PMID: 25440829 DOI: 10.1016/j.yebeh.2014.08.134] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/07/2023]
Abstract
Autism spectrum disorder (ASD) affects a significant number of individuals in the United States, with the prevalence continuing to grow. A significant proportion of individuals with ASD have comorbid medical conditions such as epilepsy. In fact, treatment-resistant epilepsy appears to have a higher prevalence in children with ASD than in children without ASD, suggesting that current antiepileptic treatments may be suboptimal in controlling seizures in many individuals with ASD. Many individuals with ASD also appear to have underlying metabolic conditions. Metabolic conditions such as mitochondrial disease and dysfunction and abnormalities in cerebral folate metabolism may affect a substantial number of children with ASD, while other metabolic conditions that have been associated with ASD such as disorders of creatine, cholesterol, pyridoxine, biotin, carnitine, γ-aminobutyric acid, purine, pyrimidine, and amino acid metabolism and urea cycle disorders have also been associated with ASD without the prevalence clearly known. Interestingly, all of these metabolic conditions have been associated with epilepsy in children with ASD. The identification and treatment of these disorders could improve the underlying metabolic derangements and potentially improve behavior and seizure frequency and/or severity in these individuals. This paper provides an overview of these metabolic disorders in the context of ASD and discusses their characteristics, diagnostic testing, and treatment with concentration on mitochondrial disorders. To this end, this paper aims to help optimize the diagnosis and treatment of children with ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".
Collapse
Affiliation(s)
- Richard E Frye
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
33
|
MTHFR Gene C677T Polymorphism in Autism Spectrum Disorders. GENETICS RESEARCH INTERNATIONAL 2014; 2014:698574. [PMID: 25431675 PMCID: PMC4241316 DOI: 10.1155/2014/698574] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022]
Abstract
Aim. Autism is a subgroup of autism spectrum disorders, classified as a heterogeneous neurodevelopmental disorder and symptoms occur in the first three years of life. The etiology of autism is largely unknown, but it has been accepted that genetic and environmental factors may both be responsible for the disease. Recent studies have revealed that the genes involved in the folate/homocysteine pathway may be risk factors for autistic children. In particular, C677T polymorphism in the MTHFR gene as a possible risk factor for autism is still controversial. We aimed to investigate the possible effect of C677T polymorphism in a Turkish cohort. Methods. Autism patients were diagnosed by child psychiatrists according to DSM-IV and DSM-V criteria. A total of 98 children diagnosed as autistic and 70 age and sex-matched children who are nonautistic were tested for C677T polymorphism. This polymorphism was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. Results. MTHFR 677T-allele frequency was found to be higher in autistic children compared with nonautistic children (29% versus 24%), but it was not found statistically significant. Conclusions. We conclude that other MTHFR polymorphisms such as A1298C or other folate/homocysteine pathway genes may be studied to show their possible role in autism.
Collapse
|
34
|
Main PA, Thomas P, Angley MT, Young R, Esterman A, King CE, Fenech MF. Lack of Evidence for Genomic Instability in Autistic Children as Measured by the Cytokinesis-Block Micronucleus Cytome Assay. Autism Res 2014; 8:94-104. [DOI: 10.1002/aur.1428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/26/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Penelope A.E. Main
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| | - Philip Thomas
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| | - Manya T. Angley
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
| | - Robyn Young
- Finders University of South Australia; Adelaide Australia
| | - Adrian Esterman
- School of Nursing and Midwifery; University of South Australia; Adelaide Australia
- Centre for Research Excellence in Chronic Disease; James Cook University; Townsville Australia
| | - Catherine E. King
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
| | - Michael F. Fenech
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| |
Collapse
|
35
|
Frye RE, Rossignol DA. Treatments for biomedical abnormalities associated with autism spectrum disorder. Front Pediatr 2014; 2:66. [PMID: 25019065 PMCID: PMC4073259 DOI: 10.3389/fped.2014.00066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Recent studies point to the effectiveness of novel treatments that address physiological abnormalities associated with autism spectrum disorder (ASD). This is significant because safe and effective treatments for ASD remain limited. These physiological abnormalities as well as studies addressing treatments of these abnormalities are reviewed in this article. Treatments commonly used to treat mitochondrial disease have been found to improve both core and associated ASD symptoms. Double-blind, placebo-controlled (DBPC) studies have investigated l-carnitine and a multivitamin containing B vitamins, antioxidants, vitamin E, and co-enzyme Q10 while non-blinded studies have investigated ubiquinol. Controlled and uncontrolled studies using folinic acid, a reduced form of folate, have reported marked improvements in core and associated ASD symptoms in some children with ASD and folate related pathway abnormities. Treatments that could address redox metabolism abnormalities include methylcobalamin with and without folinic acid in open-label studies and vitamin C and N-acetyl-l-cysteine in DBPC studies. These studies have reported improved core and associated ASD symptoms with these treatments. Lastly, both open-label and DBPC studies have reported improvements in core and associated ASD symptoms with tetrahydrobiopterin. Overall, these treatments were generally well-tolerated without significant adverse effects for most children, although we review the reported adverse effects in detail. This review provides evidence for potentially safe and effective treatments for core and associated symptoms of ASD that target underlying known physiological abnormalities associated with ASD. Further research is needed to define subgroups of children with ASD in which these treatments may be most effective as well as confirm their efficacy in DBPC, large-scale multicenter studies.
Collapse
Affiliation(s)
- Richard Eugene Frye
- Department of Pediatrics, Arkansas Children’s Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
36
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
37
|
Autism’s cancer connection: The anti-proliferation hypothesis and why it may matter. Med Hypotheses 2014; 82:26-35. [DOI: 10.1016/j.mehy.2013.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
|
38
|
Frye RE, Rossignol D, Casanova MF, Brown GL, Martin V, Edelson S, Coben R, Lewine J, Slattery JC, Lau C, Hardy P, Fatemi SH, Folsom TD, MacFabe D, Adams JB. A review of traditional and novel treatments for seizures in autism spectrum disorder: findings from a systematic review and expert panel. Front Public Health 2013; 1:31. [PMID: 24350200 PMCID: PMC3859980 DOI: 10.3389/fpubh.2013.00031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/20/2013] [Indexed: 01/20/2023] Open
Abstract
Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.
Collapse
Affiliation(s)
- Richard E. Frye
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | | | | | - Gregory L. Brown
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | - Victoria Martin
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | | | - Robert Coben
- New York University Brain Research Laboratory, New York, NY, USA
| | - Jeffrey Lewine
- MIND Research Network, University of New Mexico, Albuquerque, NM, USA
| | - John C. Slattery
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Chrystal Lau
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Paul Hardy
- Hardy Healthcare Associates, Hingham, MA, USA
| | | | | | | | | |
Collapse
|
39
|
Kezurer N, Galron D, Golan HM. Increased susceptibility to mild neonatal stress in MTHFR deficient mice. Behav Brain Res 2013; 253:240-52. [PMID: 23896051 DOI: 10.1016/j.bbr.2013.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 11/16/2022]
Abstract
Early life stress is shown to have a life-span outcome on human and animal behavior, increasing the risk for psychopathology. The gene methylenetetrahydrofolate reductase (MTHFR), which encodes for a key enzyme in one carbon metabolism, shows a high prevalence of polymorphism in patients with developmental disorders. Here we examined the hypothesis that MTHFR deficiency results in an increased susceptibility of the developing brain to mild neonatal stress (NS). Mild NS failed to alter corticosterone levels in young and adult Wt mice. However, an elevated level of corticosterone was found in the MTHFR deficient-NS female, exemplifying enhanced sensitivity to NS. Behavioral phenotyping of Wt and MTHFR deficient mice provides evidence that the effect of mild NS may be amplified by the MTHFR deficient genotype. Distinct behavioral characteristics were altered in male and female mice. In general, three patterns of influence on mice behavior were observed: (1) an additive suppressive effect of NS and MTHFR deficiency on exploration and activity was evident in females; (2) stress related parameters were significantly sensitive to genotype in females, presenting an interaction between genotype and sex; (3) various aspects of behavior in a social setting were modified preferably in males by genotype, NS and the interaction between the two, while females exhibited a smaller effect that was restricted to NS with no genotype effect. Overall, our results support an interaction between mild NS, the MTHFR genotype and sex. We suggest using this animal model to study the molecular mechanism linking these two risk factors and their involvement in neurodevelopmental disorders such as schizophrenia and autism.
Collapse
Affiliation(s)
- N Kezurer
- Department of Physiology and Cell Biology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|
40
|
Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23226953 PMCID: PMC3513682 DOI: 10.31887/dcns.2012.14.3/pchaste] [Citation(s) in RCA: 412] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors.
Collapse
Affiliation(s)
- Pauline Chaste
- INSERM U 955, IMRB, Psychiatry Genetics, Creteil, France
| | | |
Collapse
|
41
|
Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res 2013; 6:384-92. [PMID: 23653228 DOI: 10.1002/aur.1300] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/12/2013] [Indexed: 11/09/2022]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is essential for DNA biosynthesis and the epigenetic process of DNA methylation, and its gene polymorphisms have been implicated as risk factors for birth defects, neurological disorders, and cancers. However, reports on the association of MTHFR polymorphisms with autism spectrum disorders (ASD) are inconclusive. Therefore, we investigated the relationship of the MTHFR polymorphisms (C677T and A1298C) and the risk of ASD by meta-analysis. Up to December 2012, eight case-control studies involving 1672 patients with ASD and 6760 controls were included for meta-analysis. The results showed that the C677T polymorphism was associated with significantly increased ASD risk in all the comparison models [T vs. C allele (frequency of allele): odds ratio (OR) = 1.42, 95% confidence interval (CI): 1.09-1.85; CT vs. CC (heterozygote): OR = 1.48, 95% CI: 1.09-2.00; TT vs. CC (homozygote): OR = 1.86, 95% CI: 1.08-3.20; CT+TT vs. CC (dominant model): OR = 1.56, 95% CI: 1.12-2.18; and TT vs. CC+CT (recessive model): OR = 1.51, 95% CI: 1.02-2.22], whereas the A1298C polymorphism was found to be significantly associated with reduced ASD risk but only in a recessive model (CC vs. AA+AC: OR = 0.73, 95% CI: 0.56-0.97). In addition, we stratified the patient population based on whether they were from a country with food fortification of folic acid or not. The meta-analysis showed that the C677T polymorphism was found to be associated with ASD only in children from countries without food fortification. Our study indicated that the MTHFR C677T polymorphism contributes to increased ASD risk, and periconceptional folic acid may reduce ASD risk in those with MTHFR 677C>T polymorphism.
Collapse
Affiliation(s)
- Danhua Pu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
42
|
Schaevitz LR, Berger-Sweeney JE. Gene-Environment Interactions and Epigenetic Pathways in Autism: The Importance of One-Carbon Metabolism. ILAR J 2012; 53:322-40. [DOI: 10.1093/ilar.53.3-4.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Guo T, Chen H, Liu B, Ji W, Yang C. Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet Test Mol Biomarkers 2012; 16:968-73. [PMID: 22775456 DOI: 10.1089/gtmb.2012.0091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Causes of autism are still unknown. Some studies have shown that autism might be associated with metabolic abnormalities in the folate/homocysteine pathway, which is involved in DNA methylation, thus altering gene expression. The association between the methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphisms and the risk of autism is still controversial and ambiguous. The purpose of this study was to examine the effect of the MTHFR C677T polymorphism on the autism risk in the Chinese Han population. A population-based case-control study was conducted in 186 children with autism and 186 controls. The MTHFR C677T polymorphisms were determined by using a polymerase chain reaction-restriction fragment length polymorphism assay. The frequency of genotype MTHFR 677TT in children with autism (16.1%) was significantly higher (odds ratio [OR]=2.04; 95% confidence interval [CI]=1.07, 3.89; p=0.03] than those in controls (8.6%). When stratifying by select-item scores on the Autism Diagnostic Interview-Revised, it was found that children with current overactivity had a significantly higher frequency of the MTHFR 677TT genotype (OR=2.77, 95% CI=1.17, 6.60; p=0.02) than those without. This study suggested that MTHFR C677T is a risk factor of autism in Chinese Han children.
Collapse
Affiliation(s)
- Tianyou Guo
- Department of Psychology, Normal College, Shenzhen University, Shenzhen, Guangdong Province, China
| | | | | | | | | |
Collapse
|
44
|
Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B, Bonassi S. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 2012; 52:2128-41. [PMID: 22542447 DOI: 10.1016/j.freeradbiomed.2012.03.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASDs) are rarely diagnosed in children younger than 2 years, because diagnosis is based entirely on behavioral tests. Oxidative damage may play a central role in this pathogenesis, together with the interconnected transmethylation cycle and transsulfuration pathway. In an attempt to clarify and quantify the relationship between oxidative stress-related blood biomarkers and ASDs, a systematic literature review was carried out. For each identified study, mean biomarker levels were compared in cases and controls providing a point estimate, the mean ratio, for each biomarker. After meta-analysis, the ASD patients showed decreased blood levels of reduced glutathione (27%), glutathione peroxidase (18%), methionine (13%), and cysteine (14%) and increased concentrations of oxidized glutathione (45%) relative to controls, whereas superoxide dismutase, homocysteine, and cystathionine showed no association with ASDs. For the C677T allele in the methylene tetrahydrofolate reductase gene (MTHFR), homozygous mutant subjects (TT) showed a meta-OR of 2.26 (95% CI 1.30-3.91) of being affected by ASD with respect to the homozygous nonmutant (CC). Case-control studies on blood levels of vitamins suggest a lack of association (folic acid and vitamin B12) or rare association (vitamins A, B6, C, D, E). Sparse results were available for other biomarkers (ceruloplasmin, catalase, cysteinylglycine, thiobarbituric acid-reactive substances, nitric oxide) and for polymorphisms in other genes. Existing evidence is heterogeneous and many studies are limited by small sample size and effects. In conclusion, existing evidence suggests a role for glutathione metabolism, the transmethylation cycle, and the transsulfuration pathway, although these findings should be interpreted with caution, and larger, more standardized studies are warranted.
Collapse
Affiliation(s)
- Alessandra Frustaci
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|