1
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Bi C, Wang L, Fan Y, Yuan B, Alsolami S, Zhang Y, Zhang PY, Huang Y, Yu Y, Izpisua Belmonte J, Li M. Quantitative haplotype-resolved analysis of mitochondrial DNA heteroplasmy in Human single oocytes, blastoids, and pluripotent stem cells. Nucleic Acids Res 2023; 51:3793-3805. [PMID: 37014011 PMCID: PMC10164563 DOI: 10.1093/nar/gkad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Maternal mitochondria are the sole source of mtDNA for every cell of the offspring. Heteroplasmic mtDNA mutations inherited from the oocyte are a common cause of metabolic diseases and associated with late-onset diseases. However, the origin and dynamics of mtDNA heteroplasmy remain unclear. We used our individual Mitochondrial Genome sequencing (iMiGseq) technology to study mtDNA heterogeneity, quantitate single nucleotide variants (SNVs) and large structural variants (SVs), track heteroplasmy dynamics, and analyze genetic linkage between variants at the individual mtDNA molecule level in single oocytes and human blastoids. Our study presented the first single-mtDNA analysis of the comprehensive heteroplasmy landscape in single human oocytes. Unappreciated levels of rare heteroplasmic variants well below the detection limit of conventional methods were identified in healthy human oocytes, of which many are reported to be deleterious and associated with mitochondrial disease and cancer. Quantitative genetic linkage analysis revealed dramatic shifts of variant frequency and clonal expansions of large SVs during oogenesis in single-donor oocytes. iMiGseq of a single human blastoid suggested stable heteroplasmy levels during early lineage differentiation of naïve pluripotent stem cells. Therefore, our data provided new insights of mtDNA genetics and laid a foundation for understanding mtDNA heteroplasmy at early stages of life.
Collapse
Affiliation(s)
- Chongwei Bi
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lin Wang
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, China
| | - Baolei Yuan
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Samhan Alsolami
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yingzi Zhang
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pu-Yao Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing100191, China
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing100191, China
| | - Juan Carlos Izpisua Belmonte
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Inc., San Diego, CA92121, USA
| | - Mo Li
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Bioengineering program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Guangzhou, Saudi Arabia
| |
Collapse
|
3
|
Tomita K, Indo HP, Sato T, Tangpong J, Majima HJ. Development of a sensitive double TaqMan Probe-based qPCR Angle-Degree method to detect mutation frequencies. Mitochondrion 2023; 70:1-7. [PMID: 36841519 DOI: 10.1016/j.mito.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
We designed a method to examine the mutation frequencies of the A3243G mutation of mitochondrial DNA (mtDNA) in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. We performed a qPCR assay using the FAM and VIC TaqMan probes, which detect the 3243G (mutated) and 3243A (wild-type) sequences of mtDNA, respectively. The results obtained by "degree" in a series of differential mutation frequencies were used to plot a standard curve of the mutation frequency. The standard curve was then applied for qPCR assays of the desired samples. The standard deviation (%) of the samples calculated using the standard curve for the TaqMan probe was 2.4 ± 1.5%. This method could be used to examine mutation frequencies in the context of diabetes, aging, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kazuo Tomita
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroko P Indo
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Amanogawa Galactic Astronomy Research Center (AGARC), Kagoshima University Graduate School of Sciences and Engineering, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hideyuki J Majima
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Amanogawa Galactic Astronomy Research Center (AGARC), Kagoshima University Graduate School of Sciences and Engineering, 1-21-35 Korimoto, Kagoshima 890-0065, Japan; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
| |
Collapse
|
4
|
Mertens J, Regin M, De Munck N, Couvreu de Deckersberg E, Belva F, Sermon K, Tournaye H, Blockeel C, Van de Velde H, Spits C. Mitochondrial DNA variants segregate during human preimplantation development into genetically different cell lineages that are maintained postnatally. Hum Mol Genet 2022; 31:3629-3642. [PMID: 35285472 PMCID: PMC9616571 DOI: 10.1093/hmg/ddac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/30/2024] Open
Abstract
Humans present remarkable diversity in their mitochondrial DNA (mtDNA) in terms of variants across individuals as well as across tissues and even cells within one person. We have investigated the timing of the first appearance of this variant-driven mosaicism. For this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 embryos present blastomeres that carry variants only detected in that cell, showing that mtDNA mosaicism arises very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across different samples. Recurring variants had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants unique to one oocyte or single embryonic cell. These differences were maintained through development, suggesting that the mtDNA mosaicism arising in the embryo is maintained into adulthood. We observed a decline in potentially pathogenic variants between day 3 and day 5 of development, suggesting early selection. We propose a model in which closely clustered mitochondria carrying specific mtDNA variants in the ooplasm are asymmetrically distributed throughout the cell divisions of the preimplantation embryo, resulting in the earliest form of mtDNA mosaicism in human development.
Collapse
Affiliation(s)
- Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Neelke De Munck
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Florence Belva
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Herman Tournaye
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- Research Group Biology of the Testis, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department of Obstetrics, Gynaecology, Perinatology and Reproduction, Institute of Professional Education, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow 119992, Russia
| | - Christophe Blockeel
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Hilde Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- Research Group Reproduction and Immunology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
5
|
Spath K, Babariya D, Konstantinidis M, Lowndes J, Child T, Grifo JA, Poulton J, Wells D. Clinical application of sequencing-based methods for parallel preimplantation genetic testing for mitochondrial DNA disease and aneuploidy. Fertil Steril 2021; 115:1521-1532. [PMID: 33745725 DOI: 10.1016/j.fertnstert.2021.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To validate and apply a strategy permitting parallel preimplantation genetic testing (PGT) for mitochondrial DNA (mtDNA) disease and aneuploidy (PGT-A). DESIGN Preclinical test validation and case reports. SETTING Fertility centers. Diagnostics laboratory. PATIENTS Four patients at risk of transmitting mtDNA disease caused by m.8993T>G (Patients A and B), m.10191T>G (Patient C), and m.3243A>G (Patient D). Patients A, B, and C had affected children. Patients A and D displayed somatic heteroplasmy for mtDNA mutations. INTERVENTIONS Embryo biopsy, genetic testing, and uterine transfer of embryos predicted to be euploid and mutation-free. MAIN OUTCOME MEASURES Test accuracy, treatment outcomes, and mutation segregation. RESULTS Accuracy of mtDNA mutation quantification was confirmed. The test was compatible with PGT-A, and half of the embryos tested were shown to be aneuploid (16/33). Mutations were detected in approximately 40% of embryo biopsies from Patients A and D (10/24) but in none from Patients B and C (n = 29). Patients B and C had healthy children following PGT and natural conception, respectively. The m.8993T>G mutation displayed skewed segregation, whereas m.3243A>G mutation levels were relatively low and potentially impacted embryo development. CONCLUSIONS Considering the high aneuploidy rate, strategies providing a combination of PGT for mtDNA disease and aneuploidy may be advantageous compared with approaches that consider only mtDNA. Heteroplasmic women had a higher incidence of affected embryos than those with undetectable somatic mutant mtDNA but were still able to produce mutation-free embryos. While not conclusive, the results are consistent with the existence of mutation-specific segregation mechanisms occurring during oogenesis and possibly embryogenesis.
Collapse
Affiliation(s)
- Katharina Spath
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom.
| | - Dhruti Babariya
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| | | | - Jo Lowndes
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Fertility Partnership, Oxford, United Kingdom
| | | | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| |
Collapse
|
6
|
Abstract
Preimplantation genetic testing (PGT) of oocytes and embryos is the earliest form of prenatal testing. PGT requires in vitro fertilization for embryo creation. In the past 25 years, the use of PGT has increased dramatically. The indications of PGT include identification of embryos harboring single-gene disorders, chromosomal structural abnormalities, chromosomal numeric abnormalities, and mitochondrial disorders; gender selection; and identifying unaffected, HLA-matched embryos to permit the creation of a savior sibling. PGT is not without risks, limitations, or ethical controversies. This review discusses the techniques and clinical applications of different forms of PGT and the debate surrounding its associated uncertainty and expanded use.
Collapse
Affiliation(s)
- Anthony N Imudia
- Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, Suite 6022, Tampa, FL 33606, USA.
| | - Shayne Plosker
- Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, Suite 6022, Tampa, FL 33606, USA
| |
Collapse
|
7
|
Richardson J, Irving L, Hyslop LA, Choudhary M, Murdoch A, Turnbull DM, Herbert M. Concise reviews: Assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells 2015; 33:639-45. [PMID: 25377180 PMCID: PMC4359624 DOI: 10.1002/stem.1887] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
Abstract
While the fertilized egg inherits its nuclear DNA from both parents, the mitochondrial DNA is strictly maternally inherited. Cells contain multiple copies of mtDNA, each of which encodes 37 genes, which are essential for energy production by oxidative phosphorylation. Mutations can be present in all, or only in some copies of mtDNA. If present above a certain threshold, pathogenic mtDNA mutations can cause a range of debilitating and fatal diseases. Here, we provide an update of currently available options and new techniques under development to reduce the risk of transmitting mtDNA disease from mother to child. Preimplantation genetic diagnosis (PGD), a commonly used technique to detect mutations in nuclear DNA, is currently being offered to determine the mutation load of embryos produced by women who carry mtDNA mutations. The available evidence indicates that cells removed from an eight-cell embryo are predictive of the mutation load in the entire embryo, indicating that PGD provides an effective risk reduction strategy for women who produce embryos with low mutation loads. For those who do not, research is now focused on meiotic nuclear transplantation techniques to uncouple the inheritance of nuclear and mtDNA. These approaches include transplantation of any one of the products or female meiosis (meiosis II spindle, or either of the polar bodies) between oocytes, or the transplantation of pronuclei between fertilized eggs. In all cases, the transferred genetic material arises from a normal meiosis and should therefore, not be confused with cloning. The scientific progress and associated regulatory issues are discussed. Stem Cells2015;33:639–645
Collapse
Affiliation(s)
- Jessica Richardson
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E, Munne S. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet 2015; 51:553-62. [PMID: 25031024 PMCID: PMC4112454 DOI: 10.1136/jmedgenet-2014-102497] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. METHODS Embryo biopsy, whole genome amplification and semiconductor sequencing. RESULTS A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. CONCLUSIONS This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability.
Collapse
Affiliation(s)
- Dagan Wells
- Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kulvinder Kaur
- NIHR Oxford Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Jamie Grifo
- New York University Fertility Center, New York, New York, USA
| | | | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Elpida Fragouli
- Reprogenetics UK, Institute of Reproductive Sciences, Oxford, UK
| | | |
Collapse
|
9
|
Sensitive quantification of mitochondrial mutation using new Taqman probes. Open Med (Wars) 2014. [DOI: 10.2478/s11536-013-0325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe A3243G mitochondrial mutation is the major cause of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). The severity of the disease is correlated with the heteroplasmy level of the mutation. Here we describe for the first time the validation of a real-time polymerase chain reaction (PCR) assay with Taqman locked nucleic acid (LNA) fluorescent (FAM for mutant, HEX for wild type) probes for quantification of heteroplasmy levels in a total of 18 family members from 5 Vietnamese MELAS patients carrying A3243G. Almost no background of FAM signals was detected in normal samples, indicating that the probes were allele-specific. Standard curves indicate sensitive detection at 0.1% mutants and high reliability with R2 > 0.985. The correlation line between measured % mutant and expected % mutant was highly reliable, with a slope of 0.993 and R2 of 0.998. All positive A3243G mutant samples pre-screened by PCR-restriction fragment length polymorphism (RFLP) were confirmed, and their heteroplasmy levels quantified to be from 3.68 to 80.85%. The heteroplasmy levels in patients were higher than in their family members and generally correlated well with the severity of their clinical symptoms. Overall, this work is the first demonstration of the application of LNA probes for sensitive and highly reliable quantification of heteroplasmy levels in human mitochondria.
Collapse
|
10
|
Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene. Proc Natl Acad Sci U S A 2014; 111:3104-9. [PMID: 24510903 DOI: 10.1073/pnas.1318109111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We generated transmitochondrial mice (mito-mice) that carry a mutation in the tRNA(Lys) gene encoded by mtDNA for use in studies of its pathogenesis and transmission profiles. Because patients with mitochondrial diseases frequently carry mutations in the mitochondrial tRNA(Lys) and tRNA(Leu(UUR)) genes, we focused our efforts on identifying somatic mutations of these genes in mouse lung carcinoma P29 cells. Of the 43 clones of PCR products including the tRNA(Lys) or tRNA(Leu(UUR)) genes in mtDNA of P29 cells, one had a potentially pathogenic mutation (G7731A) in the tRNA(Lys) gene. P29 subclones with predominant amounts of G7731A mtDNA expressed respiration defects, thus suggesting the pathogenicity of this mutation. We then transferred G7731A mtDNA into mouse ES cells and obtained F0 chimeric mice. Mating these F0 mice with C57BL/6J (B6) male mice resulted in the generation of F1 mice with G7731A mtDNA, named "mito-mice-tRNA(Lys7731)." Maternal inheritance and random segregation of G7731A mtDNA occurred in subsequent generations. Mito-mice-tRNA(Lys7731) with high proportions of G7731A mtDNA exclusively expressed respiration defects and disease-related phenotypes and therefore are potential models for mitochondrial diseases due to mutations in the mitochondrial tRNA(Lys) gene. Moreover, the proportion of mutated mtDNA varied markedly among the pups born to each dam, suggesting that selecting oocytes with high proportions of normal mtDNA from affected mothers with tRNA(Lys)-based mitochondrial diseases may be effective as a primary prevention for obtaining unaffected children.
Collapse
|
11
|
Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 2013; 5:a021220. [PMID: 24186072 PMCID: PMC3809581 DOI: 10.1101/cshperspect.a021220] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unorthodox genetics of the mtDNA is providing new perspectives on the etiology of the common "complex" diseases. The maternally inherited mtDNA codes for essential energy genes, is present in thousands of copies per cell, and has a very high mutation rate. New mtDNA mutations arise among thousands of other mtDNAs. The mechanisms by which these "heteroplasmic" mtDNA mutations come to predominate in the female germline and somatic tissues is poorly understood, but essential for understanding the clinical variability of a range of diseases. Maternal inheritance and heteroplasmy also pose major challengers for the diagnosis and prevention of mtDNA disease.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
12
|
Murakoshi Y, Sueoka K, Takahashi K, Sato S, Sakurai T, Tajima H, Yoshimura Y. Embryo developmental capability and pregnancy outcome are related to the mitochondrial DNA copy number and ooplasmic volume. J Assist Reprod Genet 2013; 30:1367-75. [PMID: 23897005 DOI: 10.1007/s10815-013-0062-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To investigate the correlation between the ooplasmic volume and the number of mitochondrial DNA (mtDNA) copies in embryos and how they may affect fecundity. METHOD Using real-time PCR, mtDNA quantification was analyzed in unfertilized oocytes and uncleaved embryos. The size of the ovum was also assessed by calculating the ooplasmic volume at the time of granulosa cell removal for IVF or ICSI. Quantification analysis of the mtDNA in blastomeres was performed by real-time PCR at the 7-8 cell stage of the cleaved embryos at 72 h after oocyte retrieval. We calculated the cytoplasmic volume of the blastomeres. RESULT Our studies showed a significantly lower mtDNA copy number in unfertilized oocytes and uncleaved embryos in women who were older than 40 years of age (p < 0.05). The larger ooplasmic volume was also associated with earlier and more rapid cleavage (p < 0.05). The ooplasmic volume was also significantly larger in the group achieving pregnancy. We found a significant positive correlation between blastomere volume and the number of mtDNA copies (r = 0.76, p < 0.01, from Pearson product-moment correlation coefficient). CONCLUSIONS We have shown that blastomere volume is directly proportional to the number of mtDNA copies. Therefore, larger cytoplasmic volume, with earlier cleavage speed, implies more mtDNA copies. Evaluation of mtDNA quantification and the measurement of ooplasmic and blastomere volume may be useful for selection of high quality embryo and pregnancy outcome.
Collapse
Affiliation(s)
- Yukitaka Murakoshi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan,
| | | | | | | | | | | | | |
Collapse
|
13
|
Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 2013; 1:506-15. [PMID: 22701816 DOI: 10.1016/j.celrep.2012.03.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timing and mechanisms of mitochondrial DNA (mtDNA) segregation and transmission in mammals are poorly understood. Genetic bottleneck in female germ cells has been proposed as the main phenomenon responsible for rapid intergenerational segregation of heteroplasmic mtDNA. We demonstrate here that mtDNA segregation occurs during primate preimplantation embryogenesis resulting in partitioning of mtDNA variants between daughter blastomeres. A substantial shift toward homoplasmy occurred in fetuses and embryonic stem cells (ESCs) derived from these heteroplasmic embryos. We also observed a wide range of heteroplasmic mtDNA variants distributed in individual oocytes recovered from these fetuses. Thus, we present here evidence for a previously unknown mtDNA segregation and bottleneck during preimplantation embryo development, suggesting that return to the homoplasmic condition can occur during development of an individual organism from the zygote to birth, without a passage through the germline.
Collapse
|
14
|
Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil Steril 2012; 98:1236-40. [DOI: 10.1016/j.fertnstert.2012.07.1119] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
15
|
Monnot S, Gigarel N, Samuels DC, Burlet P, Hesters L, Frydman N, Frydman R, Kerbrat V, Funalot B, Martinovic J, Benachi A, Feingold J, Munnich A, Bonnefont JP, Steffann J. Segregation of mtDNA throughout human embryofetal development: m.3243A>G as a model system. Hum Mutat 2011; 32:116-25. [PMID: 21120938 PMCID: PMC3058134 DOI: 10.1002/humu.21417] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate (“mutant load”) accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A > G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A > G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T > G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders. Hum Mutat 32:116–125, 2011. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Sophie Monnot
- Université Paris-Descartes, Unité INSERM U, Hopital Necker-Enfants Malades, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Preimplantation genetic diagnosis (PGD) involves testing of single cells biopsied from oocytes and/or embryos generated in vitro. As only embryos unaffected for a given genetic condition are transferred to the uterus, it avoids prenatal diagnosis and termination of pregnancy. Follow-up data from PGD pregnancies, deliveries and children show an acceptable live birth rate and, so far, no detrimental effects of the procedure have been observed. Of course, the long-term health outcome is currently unknown. PGD was first performed in 1990 and remained an experimental procedure for a number of years. Now, two decades later, it is regarded as an established alternative to prenatal diagnosis: its use has expanded, the range of applications has broadened, and continuous technical progress in single-cell testing has led to high levels of efficiency and accuracy. The current gold standard methods (single-cell multiplex-PCR for monogenic diseases and interphase fluorescence in situ hybridization for chromosomal aberrations) are being replaced by single-cell whole genome amplification and array technology. These generalized methods substantially reduce the pre-PGD workload and allow more automated genome-wide analysis. The implementation of laboratory accreditation schemes brings the field at the same level of routine diagnostics. This article reviews the state of the art and considers indications, accuracy and current technical changes in the field of PGD.
Collapse
Affiliation(s)
- Martine De Rycke
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels, Belgium.
| |
Collapse
|
17
|
Abstract
In the last two decades, the use of preimplantation genetic testing has increased dramatically. This testing is used for identifying singlegene disorders, chromosomal abnormalities, mitochondrial disorders, gender selection in non-mendelian disorders with unequal gender distribution, aneuploidy screening, and other preconceptually identified genetic abnormalities in prospective parents. Genetic testing strategies and diagnostic accuracy continues to improve, but not without risks or controversies. In this review the authors discuss the techniques and clinical application of preimplantation genetic diagnosis, and the debate surrounding its associated uncertainty and expanded use.
Collapse
|
18
|
Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010; 465:82-5. [PMID: 20393463 PMCID: PMC2875160 DOI: 10.1038/nature08958] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/26/2010] [Indexed: 01/12/2023]
Abstract
Mutations in mitochondrial DNA (mtDNA) are a common cause of genetic disease. Pathogenic mutations in mtDNA are detected in approximately 1 in 250 live births and at least 1 in 10,000 adults in the UK are affected by mtDNA disease. Treatment options for patients with mtDNA disease are extremely limited and are predominantly supportive in nature. Mitochondrial DNA is transmitted maternally and it has been proposed that nuclear transfer techniques may be an approach for the prevention of transmission of human mtDNA disease. Here we show that transfer of pronuclei between abnormally fertilized human zygotes results in minimal carry-over of donor zygote mtDNA and is compatible with onward development to the blastocyst stage in vitro. By optimizing the procedure we found the average level of carry-over after transfer of two pronuclei is less than 2.0%, with many of the embryos containing no detectable donor mtDNA. We believe that pronuclear transfer between zygotes, as well as the recently described metaphase II spindle transfer, has the potential to prevent the transmission of mtDNA disease in humans.
Collapse
Affiliation(s)
- Lyndsey Craven
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|