1
|
Lee SH, Rinaudo PF. Metabolic regulation of preimplantation embryo development in vivo and in vitro: Molecular mechanisms and insights. Biochem Biophys Res Commun 2024; 726:150256. [PMID: 38909536 DOI: 10.1016/j.bbrc.2024.150256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Understanding of embryonic development has led to the clinical application of Assisted Reproductive technologies (ART), with the resulting birth of millions of children. Recent developments in metabolomics, proteomics, and transcriptomics have brought to light new insights into embryonic growth dynamics, with implications spanning reproductive medicine, stem cell research, and regenerative medicine. The review explores the key metabolic processes and molecular pathways active during preimplantation embryo development, including PI3K-Akt, mTOR, AMPK, Wnt/β-catenin, TGF-β, Notch and Jak-Stat signaling pathways. We focused on analyzing the differences occurring in vitro as opposed to in vivo development and we discussed significant physiological and clinical implications.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Zuo M, Liao G, Zhang W, Xu D, Lu J, Tang M, Yan Y, Hong C, Wang Y. Effects of exogenous adiponectin supplementation in early pregnant PCOS mice on the metabolic syndrome of adult female offspring. J Ovarian Res 2021; 14:15. [PMID: 33455575 PMCID: PMC7812650 DOI: 10.1186/s13048-020-00755-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Objective PCOS is a heterogeneous endocrine disorder with both reproductive and metabolic abnormalities. At present, PCOS has been confirmed to have a certain genetic background. Compared with healthy women, the vast majority of PCOS patients have hyperandrogenemia, and this excessive androgen exposure during pregnancy may affect the development of female fetuses. The aim of the current study was to investigate the effect of adiponectin intervention during early pregnancy of obese mice with PCOS on the metabolic phenotype of adult female offspring. Methods After the PCOS model was established, C57BL/6J mice were divided into maternal-control, maternal-PCOS, and maternal-PCOS + APN groups. DHEA-induced PCOS mice were supplemented with adiponectin (10 mg/kg/day) in the early pregnancy in order to eliminate adverse hormone exposure and then traced for endocrine indicators in their adult female offspring, which were observed for metabolism syndrome or endocrine disturbance and exhibited the main effects of APN. To further explore the underlying mechanism, the relative expressions of phosphorylated AMPK, PI3K, and Akt were detected in the ovaries of offspring mice. Results The serum testosterone level of the maternal-PCOS + APN group in early pregnancy was significantly lower than that of the maternal-PCOS group (p < 0.01). The serum testosterone level in the offspring-PCOS + APN group was significantly lower than in the offspring-PCOS group (p <0.05), the diestrus time characterized by massive granulocyte aggregation in the estrus cycle was significantly shorter than in the offspring-PCOS group (p<0.05), and the phenotypes of PCOS-like reproductive disorders and metabolic disorders, such as obesity, insulin resistance, impaired glucose tolerance, and hyperlipidemia, were also significantly improved in the offspring-PCOS + APN group (p < 0.05). Compared with the control group, the expression levels of phosphorylated AMPK, PI3K, and Akt in the offspring-PCOS group were significantly decreased (p < 0.05), while those in the offspring-PCOS + APN group were significantly increased (p < 0.05). Conclusions APN intervention in early pregnancy significantly reduced the adverse effects of maternal obesity and high androgen levels during pregnancy on female offspring and corrected the PCOS-like endocrine phenotype and metabolic disorders of adult female offspring. This effect may be caused by the activation of the AMPK/PI3K-Akt signaling pathway in PCOS offspring mice.
Collapse
Affiliation(s)
- Meng Zuo
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China
| | - Guotao Liao
- The Second Hospital, University of South China, 421001, Hengyang, People's Republic of China
| | - Wenqian Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China
| | - Dan Xu
- Department of Obstetrics and Gynecology, The Second People's Hospital of Yueyang, 414000, Yueyang, People's Republic of China
| | - Juan Lu
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China
| | - Manhong Tang
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China
| | - Yue Yan
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China
| | - Chenghao Hong
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China
| | - Yuxia Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University, 601 West Huangpu Avenue, 510000, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Nayak G, Salian SR, Agarwal P, Suresh Poojary P, Rao A, Kumari S, Kalthur SG, Shreya AB, Mutalik S, Adiga SK, Kalthur G. Antidiabetic drug metformin affects the developmental competence of cleavage-stage embryos. J Assist Reprod Genet 2020; 37:1227-1238. [PMID: 32335799 PMCID: PMC7244706 DOI: 10.1007/s10815-020-01709-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Metformin is the most commonly prescribed drug in the management of metabolic disorders such as polycystic ovarian syndrome (PCOS) and gestational diabetes in women of reproductive age. Insulin-sensitizing effect of metformin helps in improving from PCOS features such as hyperandrogenism, anovulation, and infertility. However, its ability to cross placental barrier raises concern about safety of the drug on early embryonic development. In this study, we evaluated the effect of metformin on the ovarian function and embryo development. METHODS Adult Swiss albino female mice were administered with metformin (0, 50, 100, and 200 mg/kg body weight) for 4 weeks and assessed for reproductive function and preimplantation embryo development. Further, effect of metformin (0, 10, 25, 50, 100, 250, and 500 μg/mL) exposure to 2-cell-stage embryos was tested under in vitro conditions. RESULTS Metformin did not alter the body weight, blood glucose, ovarian weight, and follicular reserve. However, the early embryo development was significantly affected in mice treated with metformin in vivo at highest dose. Moreover, embryos which were exposed to metformin in vitro showed dose-dependent decline in blastocyst rate and hatching rate. Furthermore, at highest concentration of metformin (500 μg/mL), all the embryos were arrested at compaction stage. CONCLUSION The study revealed that metformin affects the early embryonic development and raises concern about its use during conception.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Agarwal
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Suresh Poojary
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
He P, Li Z, Xu F, Ru G, Huang Y, Lin E, Peng S. AMPK Activity Contributes to G2 Arrest and DNA Damage Decrease via p53/p21 Pathways in Oxidatively Damaged Mouse Zygotes. Front Cell Dev Biol 2020; 8:539485. [PMID: 33015052 PMCID: PMC7505953 DOI: 10.3389/fcell.2020.539485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
In zygotes, the capacity of G2/M checkpoint and DNA repair mechanisms to respond to DNA damage varies depending on different external stressors. In our previous studies, we found that mild oxidative stress induced a G2/M phase delay in mouse zygotes fertilized in vitro, due to the activation of the spindle assembly checkpoint. However, it is unclear whether the G2/M phase delay involves G2 arrest, triggered by activation of the G2/M checkpoint, and whether AMPK, a highly conserved cellular energy sensor, is involved in G2 arrest and DNA damage repair in mouse zygotes. Here, we found that mouse zygotes treated with 0.03 mM H2O2 at 7 h post-insemination (G1 phase), went into G2 arrest in the first cleavage. Furthermore, phosphorylated H2AX, a specific DNA damage and repair marker, can be detected since the early S phase. We also observed that oxidative stress induced phosphorylation and activation of AMPK. Oxidative stress-activated AMPK first localized in the cytoplasm of the mouse zygotes in the late G1 phase and then translocated to the nucleus from the early S phase. Overall, most of the activated AMPK accumulated in the nuclei of mouse zygotes arrested in the G2 phase. Inhibition of AMPK activity with Compound C and SBI-0206965 abolished oxidative stress-induced G2 arrest, increased the activity of CDK1, and decreased the induction of cell cycle regulatory proteins p53 and p21. Moreover, bypassing G2 arrest after AMPK inhibition aggravated oxidative stress-induced DNA damage at M phase, increased the apoptotic rate of blastocysts, and reduced the formation rate of 4-cell embryos and blastocysts. Our results suggest the G2/M checkpoint and DNA repair mechanisms are operative in coping with mild oxidative stress-induced DNA damage. Further, AMPK activation plays a vital role in the regulation of the oxidative stress-induced G2 arrest through the inhibition of CDK1 activity via p53/p21 pathways, thereby facilitating the repair of DNA damage and the development and survival of oxidative stress-damaged embryos. Our study provides insights into the molecular mechanisms underlying oxidative-stress induced embryonic developmental arrest, which is crucial for the development of novel strategies to ensure viable embryo generation.
Collapse
Affiliation(s)
- Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Key Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Key Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Zhiling Li,
| | - Feng Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sanfeng Peng
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Huang F, Sun Y, Gao H, Wu H, Wang Z. Carbon disulfide induces embryo loss by perturbing the expression of the mTOR signalling pathway in uterine tissue in mice. Chem Biol Interact 2019; 300:8-17. [DOI: 10.1016/j.cbi.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022]
|
6
|
Li Q, Louden E, Zhou J, Drewlo S, Dai J, Puscheck EE, Chen K, Rappolee DA. Stress Forces First Lineage Differentiation of Mouse Embryonic Stem Cells; Validation of a High-Throughput Screen for Toxicant Stress. Stem Cells Dev 2019; 28:101-113. [PMID: 30328800 DOI: 10.1089/scd.2018.0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse Embryonic Stem Cells (mESCs) are unique in their self-renewal and pluripotency. Hypothetically, mESCs model gestational stress effects or stresses of in vitro fertilization/assisted reproductive technologies or drug/environmental exposures that endanger embryos. Testing mESCs stress responses should diminish and expedite in vivo embryo screening. Transgenic mESCs for green fluorescent protein (GFP) reporters of differentiation use the promoter for platelet-derived growth factor receptor (Pdgfr)a driving GFP expression to monitor hyperosmotic stress-forced mESC proliferation decrease (stunting), and differentiation increase that further stunts mESC population growth. In differentiating mESCs Pdgfra marks the first-lineage extraembryonic primitive endoderm (ExEndo). Hyperosmotic stress forces mESC differentiation gain (Pdgfra-GFP) in monolayer or three-dimensional embryoid bodies. Despite culture with potency-maintaining leukemia inhibitory factor (LIF), stress forces ExEndo as assayed using microplate readers and validated by coexpression of Pdgfra-GFP, Disabled 2 (Dab2), and laminin by immunofluorescence and GFP protein and Dab2 by immunoblot. In agreement with previous reports, Rex1 and Oct4 loss was inversely proportional to increased Pdgfra-GFP mESC after treatment with high hyperosmotic sorbitol despite LIF. The increase in subpopulations of Pdgfra-GFP+ cells>background at ∼23% was similar to the previously reported ∼25% increase in Rex1-red fluorescent protein (RFP)-negative subpopulation at matched high sorbitol doses. By microplate reader, there is a ∼7-11-fold increase in GFP at a high nonmorbid and a morbid dose despite LIF, compared with LIF alone. By flow cytometry (FACS), the subpopulation of Pdgfra-GFP+ cells>background increases ∼8-16-fold at these doses. Taken together, the microplate, FACS, immunoblot, and immunofluorescence data suggest that retinoic acid or hyperosmotic stress forces dose-dependent differentiation whether LIF is present or not and this is negatively correlated with and possibly compensates for stress-forced diminished ESC population expansion and potency loss.
Collapse
Affiliation(s)
- Quanwen Li
- 1 CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Erica Louden
- 1 CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,2 Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,3 Reproductive Endocrinology, Infertility & Genetics, Augusta University, Augusta, Georgia
| | - Jordan Zhou
- 4 Department of Obstetrics and Gynecology, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Sascha Drewlo
- 5 Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jing Dai
- 1 CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth E Puscheck
- 1 CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,6 InVia Fertility, Hoffman Estates, Illinois
| | - Kang Chen
- 4 Department of Obstetrics and Gynecology, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Daniel A Rappolee
- 1 CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,2 Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,7 Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan.,8 Department of Biology, University of Windsor, Windsor, Ontario, Canada.,9 Reproductive Stress, Measurement, Mechanism and Management, Inc., Grosse Pointe Farms, Michigan
| |
Collapse
|
7
|
Puscheck EE, Bolnick A, Awonuga A, Yang Y, Abdulhasan M, Li Q, Secor E, Louden E, Hüttemann M, Rappolee DA. Why AMPK agonists not known to be stressors may surprisingly contribute to miscarriage or hinder IVF/ART. J Assist Reprod Genet 2018; 35:1359-1366. [PMID: 29882092 PMCID: PMC6086802 DOI: 10.1007/s10815-018-1213-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Here we examine recent evidence suggesting that many drugs and diet supplements (DS), experimental AMP-activated protein kinase (AMPK) agonists as well as energy-depleting stress, lead to decreases in anabolism, growth or proliferation, and potency of cultured oocytes, embryos, and stem cells in an AMPK-dependent manner. Surprising data for DS and drugs that have some activity as AMPK agonists in in vitro experiments show possible toxicity. This needs to be balanced against a preponderance of evidence in vivo that these drugs and DS are beneficial for reproduction. We here discuss and analyze data that leads to two possible conclusions: First, although DS and drugs that have some of their therapeutic mechanisms mediated by AMPK activity associated with low ATP levels, some of the associated health problems in vivo and in vitro fertilization/assisted reproductive technologies (IVF/ART) may be better-treated by increasing ATP production using CoQ10 (Ben-Meir et al., Aging Cell 14:887-895, 2015). This enables high developmental trajectories simultaneous with solving stress by energy-requiring responses. In IVF/ART, it is ultimately best to maintain handling and culture of gametes and embryos in the quietest state with low metabolic activity (Leese et al., Mol Hum Reprod 14:667-672, 2008; Leese, Bioessays 24 (9):845-849, 2002) using back-to-nature or simplex algorithms to identify optima (Biggers, Reprod Biomed Online 4 Suppl 1:30-38, 2002). Stress markers, such as checkpoint proteins like TRP53 (aka p53) (Ganeshan et al., Exp Cell Res 358:227-233, 2017); Ganeshan et al., Biol Reprod 83:958-964, 2010) and a small set of kinases from the protein kinome that mediate enzymatic stress responses, can also be used to define optima. But, some gametes or embryos may have been stressed in vivo prior to IVF/ART or IVF/ART optimized for one outcome may be suboptimal for another. Increasing nutrition or adding CoQ10 to increase ATP production (Yang et al., Stem Cell Rev 13:454-464, 2017), managing stress enzyme levels with inhibitors (Xie et al., Mol Hum Reprod 12:217-224, 2006), or adding growth factors such as GM-CSF (Robertson et al., J Reprod Immunol 125:80-88, 2018); Chin et al., Hum Reprod 24:2997-3009, 2009) may increase survival and health of cultured embryos during different stress exposure contexts (Puscheck et al., Adv Exp Med Biol 843:77-128, 2015). We define "stress" as negative stimuli which decrease normal magnitude and speed of development, and these can be stress hormones, reactive oxygen species, inflammatory cytokines, or physical stimuli such as hypoxia. AMPK is normally activated by high AMP, commensurate with low ATP, but it was recently shown that if glucose is present inside the cell, AMPK activation by low ATP/high AMP is suppressed (Zhang et al., Nature 548:112-116, 2017). As we discuss in more detail below, this may also lead to greater AMPK agonist toxicity observed in two-cell embryos that do not import glucose. Stress in embryos and stem cells increases AMPK in large stimulation indexes but also direness indexes; the fastest AMPK activation occurs when stem cells are shifted from optimal oxygen to lower or high levels (Yang et al., J Reprod Dev 63:87-94, 2017). CoQ10 use may be better than risking AMPK-dependent metabolic and developmental toxicity when ATP is depleted and AMPK activated. Second, the use of AMPK agonists, DS, and drugs may best be rationalized when insulin resistance or obesity leads to aberrant hyperglycemia and hypertriglyceridemia, and obesity that negatively affect fertility. Under these conditions, beneficial effects of AMPK on increasing triglyceride and fatty acid and glucose uptake are important, as long as AMPK agonist exposures are not too high or do not occur during developmental windows of sensitivity. During these windows of sensitivity suppression of anabolism, proliferation, and stemness/potency due to AMPK activity, or overexposure may stunt or kill embryos or cause deleterious epigenetic changes.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Kaleida Women's and Children's Hospital Buffalo New York, Buffalo, NY, USA
| | - Awoniyi Awonuga
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Yu Yang
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Quanwen Li
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Eric Secor
- Department of Medicine, Integrative Medicine, Hartford Hospital and University of Connecticut, Hartford, CT, 06102, USA
| | - Erica Louden
- Augusta University of Health Sciences, Augusta, GA, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
8
|
Calder MD, Edwards NA, Betts DH, Watson AJ. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice. Mol Hum Reprod 2018; 23:771-785. [PMID: 28962017 DOI: 10.1093/molehr/gax050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? SUMMARY ANSWER AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. WHAT IS KNOWN ALREADY AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. STUDY DESIGN, SIZE, DURATION Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. PARTICIPANTS/MATERIALS, SETTING, METHODS Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. MAIN RESULTS AND THE ROLE OF CHANCE Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. WIDER IMPLICATIONS OF THE FINDINGS Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. STUDY FUNDING AND COMPETING INTEREST(S) Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
Collapse
Affiliation(s)
- Michele D Calder
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Nicole A Edwards
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Dean H Betts
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
| | - Andrew J Watson
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
| |
Collapse
|
9
|
Yang Y, Abdulhasan M, Awonuga A, Bolnick A, Puscheck EE, Rappolee DA. Hypoxic Stress Forces Adaptive and Maladaptive Placental Stress Responses in Early Pregnancy. Birth Defects Res 2018; 109:1330-1344. [PMID: 29105384 DOI: 10.1002/bdr2.1149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Abstract
This review focuses on hypoxic stress and its effects on the placental lineage and the earliest differentiation events in mouse and human placental trophoblast stem cells (TSCs). Although the placenta is a decidual organ at the end of pregnancy, its earliest rapid growth and function at the start of pregnancy precedes and supports growth and function of the embryo. Earliest function requires that TSCs differentiate, however, "hypoxia" supports rapid growth, but not differentiation of TSCs. Most of the literature on earliest placental "hypoxia" studies used 2% oxygen which is normoxic for TSCs. Hypoxic stress happens when oxygen level drops below 2%. It decreases anabolism, proliferation, potency/stemness and increases differentiation, despite culture conditions that would sustain proliferation and potency. Thus, to study the pathogenesis due to TSC dysfunction, it is important to study hypoxic stress below 2%. Many studies have been performed using 0.5 to 1% oxygen in cultured mouse TSCs. From all these studies, a small number has examined human trophoblast lines and primary first trimester placental hypoxic stress responses in culture. Some other stress stimuli, aside from hypoxic stress, are used to elucidate common and unique aspects of hypoxic stress. The key outcomes produced by hypoxic stress are mitochondrial, anabolic, and proliferation arrest, and this is coupled with stemness loss and differentiation. Hypoxic stress can lead to depletion of stem cells and miscarriage, or can lead to later dysfunctions in placentation and fetal development. Birth Defects Research 109:1330-1344, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Yang
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Awoniyi Awonuga
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Institutes for Environmental Health Science, Wayne state University School of Medicine, Detroit, Michigan.,Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
10
|
Blastocyst-Derived Stem Cell Populations under Stress: Impact of Nutrition and Metabolism on Stem Cell Potency Loss and Miscarriage. Stem Cell Rev Rep 2018; 13:454-464. [PMID: 28425063 DOI: 10.1007/s12015-017-9734-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Data from in vitro and in vivo models suggest that malnutrition and stress trigger adaptive responses, leading to small for gestational age (SGA) blastocysts with fewer cell numbers. These stress responses are initially adaptive, but become maladaptive with increasing stress exposures. The common stress responses of the blastocyst-derived stem cells, pluripotent embryonic and multipotent placental trophoblast stem cells (ESCs and TSCs), are decreased growth and potency, and increased, imbalanced and irreversible differentiation. SGA embryos may fail to produce sufficient antiluteolytic placental hormone to maintain corpus luteum progesterone secretion that provides nutrition at the implantation site. Myriad stress inputs for the stem cells in the embryo can occur in vitro during in vitro fertilization/assisted reproductive technology (IVF/ART) or in vivo. Paradoxically, stresses that diminish stem cell growth lead to a higher level of differentiation simultaneously which further decreases ESC or TSC numbers in an attempt to functionally compensate for fewer cells. In addition, prolonged or strong stress can cause irreversible differentiation. Resultant stem cell depletion is proposed as a cause of miscarriage via a "quiet" death of an ostensibly adaptive response of stem cells instead of a reactive, violent loss of stem cells or their differentiated progenies.
Collapse
|
11
|
Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, Shamir AM, Dai J, Puscheck EE, Secor E, Rappolee DA. Two-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and stemness by commonly used fertility drugs, a diet supplement, and stress. J Assist Reprod Genet 2017; 34:1609-1617. [PMID: 28913567 DOI: 10.1007/s10815-017-1028-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
PURPOSE This study tests whether metformin or diet supplement BR-DIM-induced AMP-activated protein kinase (AMPK) mediated effects on development are more pronounced in blastocysts or 2-cell mouse embryos. METHODS Culture mouse zygotes to two-cell embryos and test effects after 0.5-1 h AMPK agonists' (e.g., Met, BR-DIM) exposure on AMPK-dependent ACCser79P phosphorylation and/or Oct4 by immunofluorescence. Culture morulae to blastocysts and test for increased ACCser79P, decreased Oct4 and for AMPK dependence by coculture with AMPK inhibitor compound C (CC). Test whether Met or BR-DIM decrease growth rates of morulae cultured to blastocyst by counting cells. RESULT(S) Aspirin, metformin, and hyperosmotic sorbitol increased pACC ser79P ~ 20-fold, and BR-DIM caused a ~ 30-fold increase over two-cell embryos cultured for 1 h in KSOMaa but only 3- to 6-fold increase in blastocysts. We previously showed that these stimuli decreased Oct4 40-85% in two-cell embryos that was ~ 60-90% reversible by coculture with AMPK inhibitor CC. However, Oct4 decreased only 30-50% in blastocysts, although reversibility of loss by CC was similar at both embryo stages. Met and BR-DIM previously caused a near-complete cell proliferation arrest in two-cell embryos and here Met caused lower CC-reversible growth decrease and AMPK-independent BR-DIM-induced blastocyst growth decrease. CONCLUSION Inducing drug or diet supplements decreased anabolism, growth, and stemness have a greater impact on AMPK-dependent processes in two-cell embryos compared to blastocysts.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Brian Kilburn
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Mindie Howard
- EmbryoTech Laboratories, 140 Hale Street, Haverhill, MA, 01830, USA
| | - Paul Andresen
- Wayne State University School of Medicine, Ob/Gyn, IVF Clinic, University Physician Group, 26400 W 12 Mile Road, Suite 140, Southfield, MI, 48034, USA
| | - Alexandra M Shamir
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| | - Jing Dai
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.,Department of Medicine, Hartford Hospital and University of Connecticut, Hartford, CT, USA
| | - Eric Secor
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
12
|
CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death. J Assist Reprod Genet 2017; 34:1595-1607. [PMID: 28900834 DOI: 10.1007/s10815-017-1027-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE We tested whether mitochondrial electron transport chain electron carrier coenzyme Q10 (CoQ10) increases ATP during bovine IVM and increases %M2 oocytes, mitochondrial polarization/mass, and Oct4, and decreases pAMPK and oocyte death. METHODS Bovine oocytes were aspirated from ovaries and cultured in IVM media for 24 h with 0, 20, 40, or 60 μM CoQ10. Oocytes were assayed for ATP by luciferase-based luminescence. Oocyte micrographs were quantitated for Oct4, pAMPK (i.e., activity), polarization by JC1 staining, and mitochondrial mass by MitoTracker Green staining. RESULTS CoQ10 at 40 μM was optimal. Oocytes at 40 μM enabled 1.9-fold more ATP than 0 μM CoQ10. There was 4.3-fold less oocyte death, 1.7-fold more mitochondrial charge polarization, and 3.1-fold more mitochondrial mass at 40 μM than at 0 μM CoQ10. Increased ATP was associated with 2.2-fold lower AMPK thr172P activation and 2.1-fold higher nuclear Oct4 stemness/potency protein at 40 μM than at 0 μM CoQ10. CoQ10 is hydrophobic, and at all doses, 50% was lost from media into oil by ~ 12 h. Replenishing CoQ10 at 12 h did not significantly diminish dead oocytes. CONCLUSIONS The data suggest that CoQ10 improves mitochondrial function in IVM where unwanted stress, higher AMPK activity, and Oct4 potency loss are induced.
Collapse
|
13
|
Bolnick A, Awonuga AO, Yang Y, Abdulhasan M, Xie Y, Zhou S, Puscheck EE, Rappolee DA. Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress. J Assist Reprod Genet 2017. [PMID: 28647787 DOI: 10.1007/s10815-017-0971-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review is a response to the Fellows Forum on testing 2% oxygen for best culture of human blastocysts (J Ass Reprod Gen 34:303-8, 1; J Ass Reprod Gen 34:309-14, 2) prior to embryo transfer. It is a general analysis in support of the position that an understanding of stem cell physiology and responses to oxygen are necessary for optimization of blastocyst culture in IVF and to enhance reproductive success in fertile women.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Kaleida Women's and Children's Hospital Buffalo New York, Buffalo, NY, USA
| | - Awoniyi O Awonuga
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yu Yang
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Sichang Zhou
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada. .,CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck EE, Rappolee DA. Departure from optimal O 2 level for mouse trophoblast stem cell proliferation and potency leads to most rapid AMPK activation. J Reprod Dev 2016; 63:87-94. [PMID: 27867161 PMCID: PMC5320434 DOI: 10.1262/jrd.2016-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies showed that cultured mouse trophoblast stem cells (mTSCs) have the most rapid proliferation, normal maintenance of stemness/potency, the
least spontaneous differentiation, and the lowest level of stress-activated protein kinase (SAPK) when incubated at 2% O2 rather than at the
traditional 20% O2 or hypoxic (0.5% and 0% O2) conditions. Switching from 2% O2 induced fast SAPK responses. Here we tested the
dose response of AMP-activated protein kinase (AMPK) in its active form (pAMPK Thr172P) at O2 levels from 20–0%, and also tested whether pAMPK levels
show similar rapid changes when mTSC cultures were switched from the optimal 2% O2 to other O2 conditions. There was a delayed increase in
pAMPK levels ~6–8 h after switching conditions from 20% to 2%, 0.5%, or 0% O2. Altering O2 conditions from 2% to either 20%, 0.5%, or 0%
led to rapid increase in pAMPK levels within 1 h, similar to the previously reported SAPK response in mTSC cells removed from 2% O2. Twelve hours of
0.5% O2 exposure led to cell program changes in terms of potency loss and suppressed biosynthesis, as indicated by levels of phosphorylated inactive
acetyl CoA carboxylase (pACC). Phosphorylation of ACC was inhibited by the AMPK inhibitor Compound C. However, unlike other stressors, AMPK does not mediate
hypoxia-induced potency loss in mTSCs. These results suggest an important aspect of stem cell biology, which demands rapid stress enzyme activation to cope with
sudden changes in external environment, e.g., from least stressful (2% O2) to more stressful conditions.
Collapse
Affiliation(s)
- Yu Yang
- Ob/Gyn, Wayne State University Medical School, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|