1
|
Li M, Hu S, Sun J, Zhang Y. The role of vitamin D3 in follicle development. J Ovarian Res 2024; 17:148. [PMID: 39020390 PMCID: PMC11253454 DOI: 10.1186/s13048-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Vitamin D3 plays a crucial role in female reproduction. As research progresses, the mechanisms of action of vitamin D3 on follicular development have been widely discussed. Firstly, key enzymes involved in the synthesis and metabolism of vitamin D3 have been discovered in the ovary, suggesting that vitamin D3 can be synthesized and metabolized locally within the ovary. Additionally, the detection of vitamin D3 receptors (VDR) in follicles suggests that vitamin D3 may exert its effects by binding specifically to these receptors during follicular development. Further research indicates that vitamin D3 promotes follicular growth by enhancing the development of granulosa cells (GCs) and oocytes. Currently, the mechanism of action of vitamin D3 in follicular development is becoming increasingly clear. Vitamin D3 promotes oocyte development by regulating molecules involved in meiotic arrest in oocytes. It also enhances granulosa cell proliferation by stimulating steroid hormone synthesis and cell cycle regulation. Additionally, vitamin D3 exerts anti-inflammatory effects by reducing oxidative stress and advanced glycation end-products (AGEs), mitigating the detrimental effects of inflammation on follicular development. These functions of vitamin D3 have clinical applications, such as in treating polycystic ovary syndrome (PCOS), improving female fertility, and enhancing outcomes in in vitro fertilization (IVF). This review summarizes the research progress on the role and mechanisms of vitamin D3 in follicular development and briefly summarizes its clinical applications.
Collapse
Affiliation(s)
- Mingxia Li
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China
| | - Shuhui Hu
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China
| | - Jiaxiang Sun
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China
| | - Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
2
|
Xu F, Bagnjuk K, Marti-Gutierrez N, Srinivasan S, Mayerhofer A, Lee D, Pejovic T, Mitalipov S, Xu J. Reduced anti-Müllerian hormone action in cumulus-oocyte complexes is beneficial for oocyte maturation without affecting oocyte competence. Front Endocrinol (Lausanne) 2024; 15:1365260. [PMID: 38887270 PMCID: PMC11180751 DOI: 10.3389/fendo.2024.1365260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a key paracrine/autocrine factor regulating folliculogenesis in the postnatal ovary. As antral follicles mature to the preovulatory stage, AMH production tends to be limited to cumulus cells. Therefore, the present study investigated the role of cumulus cell-derived AMH in supporting maturation and competence of the enclosed oocyte. Cumulus-oocyte complexes (COCs) were isolated from antral follicles of rhesus macaque ovaries for in vitro maturation with or without AMH depletion. Oocyte meiotic status and embryo cleavage after in vitro fertilization were assessed. In vitro maturation with AMH depletion was also performed using COCs from antral follicles of human ovarian tissue. Oocyte maturation and morphology were evaluated. The direct AMH action on mural granulosa cells of the preovulatory follicle was further assessed using human granulosa cells cultured with or without AMH supplementation. More macaque COCs produced metaphase II oocytes with AMH depletion than those of the control culture. However, preimplantation embryonic development after in vitro fertilization was comparable between oocytes derived from COCs cultured with AMH depletion and controls. Oocytes resumed meiosis in human COCs cultured with AMH depletion and exhibited a typical spindle structure. The confluency and cell number decreased in granulosa cells cultured with AMH supplementation relative to the control culture. AMH treatment did not induce cell death in cultured human granulosa cells. Data suggest that reduced AMH action in COCs could be beneficial for oocyte maturation. Cumulus cell-derived AMH is not essential for supporting oocyte competence or mural granulosa cell viability.
Collapse
Affiliation(s)
- Fuhua Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Konstantin Bagnjuk
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, United States
| | - Sathya Srinivasan
- Integrated Pathology Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - David Lee
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tanja Pejovic
- Obstetrics and Gynecology Health Center, Providence, Medford, OR, United States
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, United States
| | - Jing Xu
- Department of Biology & Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
3
|
Guo Y, Jia L, Zeng H, Sun P, Su W, Li T, Liang X, Fang C. Neurotrophin-4 promotes in vitro development and maturation of human secondary follicles yielding metaphase II oocytes and successful blastocyst formation. Hum Reprod Open 2024; 2024:hoae005. [PMID: 38371224 PMCID: PMC10873269 DOI: 10.1093/hropen/hoae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/14/2023] [Indexed: 02/20/2024] Open
Abstract
STUDY QUESTION Does a matrix-free culture system supplemented with neurotrophic factor 4 (NT4) improve human in vitro follicular development and meiotic maturation, ultimately resulting in fertilizable oocytes? SUMMARY ANSWER NT4 supplementation of in vitro culture significantly enhances the growth, steroid hormone production, and maturity potential of human secondary follicles derived from fresh ovarian medulla (from post- and pre-pubertal patients), thereby yielding fertilizable oocytes. WHAT IS KNOWN ALREADY Reconstituting folliculogenesis in vitro is of paramount importance in the realms of fertility preservation, reproductive biology research, and reproductive toxicity assessments. However, the efficiency of in vitro culture systems remains suboptimal, as the attainment of fertilizable oocytes from in vitro growth (IVG) of human follicles remains unachieved, with the data being particularly scant regarding follicles from prepubertal girls. We have previously found that mouse oocytes from secondary follicles derived from IVG are deficient in neuroendocrine regulation. NT4 and its corresponding receptor have been identified in human follicles. Significantly, the addition of NT4 during the IVG process markedly enhances both follicle growth and oocyte maturation rates in mice. STUDY DESIGN SIZE DURATION Fresh medulla tissue obtained during tissue preparation for ovarian tissue cryopreservation (OTC) were collected from 10 patients aged from 6 to 21 years old, all of whom had undergone unilateral oophorectomy as a means of fertility preservation. Isolated secondary follicles were individually cultured in vitro with or without NT4 in a matrix-free system. PARTICIPANTS/MATERIALS SETTING METHODS Secondary follicles, extracted via enzymatic digestion and mechanical disruption from each patient, were randomly allocated to either a control group or an NT4-supplemented group (100 ng/ml), followed by individual culture on an ultra-low attachment plate. Follicle growth and viability were assessed by microscopy. Levels of anti-Müllerian hormone (AMH), estradiol, and progesterone in the medium were quantified. An oocyte-specific marker was identified using confocal fluorescence microscopy following DEAD box polypeptide 4 (DDX4) staining. The competence of individual oocytes for maturation and fertilization were assessed after IVM and ICSI with donated sperm samples. MAIN RESULTS AND THE ROLE OF CHANCE Overall, isolated follicles from both groups survived up to 6 weeks with increasing diameters over the duration (P < 0.05), reaching terminal diameters of almost 1 mm with confirmed steroidogenesis and expression of oocyte marker (DDX4), and producing morphologically normal MII oocytes. When compared with the control group, the NT4 group had a similar initial follicular diameter (206 ± 61.3 vs 184 ± 93.4 μm) but exhibited a significant increase in follicular diameter from the ninth day of culture onwards (P < 0.05). From Week 3, estradiol and progesterone production were significantly increased in the NT4 group, while no significant difference was observed in AMH production between groups. The proportion of 'fast-growth' follicles in the NT4 group was significantly higher than that in the control group (13/23 vs 6/24, P < 0.05). An increased efficiency of MII oocyte maturation per live follicle in the NT4 group was also observed (control group vs NT4 group, 4/24 vs 10/23, P < 0.05). It is noteworthy that an MII oocyte obtained from the control group exhibited abnormal fertilization after ICSI. In contrast, an MII oocyte acquired from the NT4 group progressed to the blastocyst stage and showed potential for transfer. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The cohort examined in this study was all patients diagnosed with beta-thalassemia major. Whether this culture system is effective for patients with other diseases remains unknown. Since the chosen dose of NT4 was established based on dose finding in mice, the optimal dose for use in a human IVG system needs further confirmation. The oocytes and embryos procured from this study have not been quantified for ploidy status or epigenetic signatures. WIDER IMPLICATIONS OF THE FINDINGS Fresh medulla tissue obtained during tissue preparation for OTC may serve as a precious source of fertilizable oocytes for female fertility preservation, even for pre-pubertal girls, without the threat of tumour reintroduction. After further characterization and optimization of the system, this culture system holds the potential to provide a powerful future research tool, for the comprehensive exploration of human follicular development mechanisms and for conducting reproductive toxicity evaluations. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Key R&D Program of China (grant number 2022YFC2703000) and National Natural Science Foundation of China (grant numbers 82271651 and 81871214). The medium used in human follicle in vitro culture in this study has been applied for a national invention patent in China (No. 202211330660.7). The inventors of the patent, in order, are: Y.G., C.F., and X.L.
Collapse
Affiliation(s)
- Yingchun Guo
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Haitao Zeng
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Peng Sun
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Wenlong Su
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| |
Collapse
|
4
|
Effect of dominant follicle status at the time of retrieval on the clinical outcomes in natural cycle IVF combined with immature oocyte treatment. Aging (Albany NY) 2022; 14:4728-4738. [PMID: 35674776 PMCID: PMC9217702 DOI: 10.18632/aging.204106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Objective: It is commonly believed that the oocytes from small follicles are unhealthy when a dominant follicle (DF) is recruited in the ovaries, especially when the DF is ovulated. This study aims to confirm whether the presence or ovulation of DF at the time of retrieval affects the clinical outcome of the natural cycle IVF with in vitro maturation (NC-IVF/M) treatment. Methods: Data were collected from 446 women with regular menstrual cycle and 536 retrieval cycles using NC-IVF/M treatment. The cycles were divided into three groups based on the results of the oocyte retrieval cycle. Group A covers the collection of oocytes from the DF and small follicles; Group B incorporates failed oocyte retrieval from DF and then the oocytes are retrieved only from small follicles; and Group C includes the retrieval of oocytes only from small follicles accompanied with an ovulated DF. Furthermore, Group B and C have subgroups to include whether in vivo matured oocytes were obtained from small follicles. Following aspiration of DF and small follicles, mature oocytes were inseminated on the date of retrieval by intracytoplasmic sperm injection (ICSI) and the immature oocytes were matured in vitro. If the immature oocytes were matured in vitro, they were inseminated using ICSI, and then the embryos obtained from in vivo and in vitro matured oocytes were transferred accordingly. Results: The oocytes from DF were successfully retrieved in 445 cycles (83.0%), failed to be retrieved in 54 cycles (10.1%) and ovulated in 37 cycles (6.9%). In Group A, an average of 2.0 ± 1.7 mature oocytes were retrieved, which was significantly higher than the average of Group B, with 1.3 ± 1.3 matured oocytes and Group C, with an average of 1.1 ± 1.5 matured oocytes (P < 0.01). However, the average number of immature oocytes retrieved from each group show no difference among the three groups. There was no significant difference in maturation rates of immature oocytes, fertilization rates among the three groups. The clinical pregnancy rate per transfer cycle is 34.5%, 34.6% and 25.7% in Group A, B and C, respectively. No significant differences were observed in embryonic development and implantation capacity in Group B and C in comparison to Group A. And there was no significant difference in clinical pregnancy, implantation, live birth and miscarriage rates among the three groups. No significant differences were observed in the developmental and implantation capacity according to with or without in vivo matured oocytes were retrieved in Group B and Group C. Conclusion: The presence or ovulation of the dominant follicle from the ovaries does not significantly influence the developmental and implantation capacity of immature oocytes retrieved from small follicles, suggesting that NC-IVF/M is a promising treatment option for women without ovarian stimulation.
Collapse
|
5
|
Du Y, Carranza Z, Luan Y, Busman-Sahay K, Wolf S, Campbell SP, Kim SY, Pejovic T, Estes JD, Zelinski M, Xu J. Evidence of cancer therapy-induced chronic inflammation in the ovary across multiple species: A potential cause of persistent tissue damage and follicle depletion. J Reprod Immunol 2022; 150:103491. [PMID: 35176661 PMCID: PMC9224575 DOI: 10.1016/j.jri.2022.103491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023]
Abstract
Chemotherapy and radiation treatments are known for deleterious effects on the ovary, which can result in prolonged recovery time before ovarian function resumes, including follicular growth after completion of these therapies. To better understand the protracted ovarian dysfunctions after chemotherapy and radiotherapy, we designed a comprehensive study to investigate the underlying mechanisms involved in chronic ovarian damage that prevent follicular development and/or to induce persistent follicle loss. Blood and ovarian samples were collected from reproductive age women, rhesus macaques, and mice after completion of chemotherapy and/or radiotherapy and from age-matched patients and animals without chemotherapy agent or radiation exposure to serve as controls. Serum levels of anti-Müllerian hormone and proinflammatory cytokines, monocyte chemoattractant protein 1 and IL6, were measured. Ovarian tissue was assessed for histopathology and inflammatory cell infiltration, e.g., macrophages and neutrophils, by immuohistochemistry. Serum anti-Müllerian hormone concentrations were lower, whereas proinflammatory cytokine concentrations were higher, in patients and rhesus macaques at ~1 year post-chemotherapy agent and/or radiation exposure compared with controls. The number of primordial follicles reduced in the mouse ovary > 5 weeks after a single injection of cyclophosphamide. Macrophage infiltration was observed in the ovarian cortex of humans and animals. These data suggest that chronic inflammation induced by chemotherapy agents and/or radiation treatment may be associated with persistent ovarian tissue damage, follicle depletion, and functional decline. Interventions that dampen the overactivated inflammatory response may further protect the ovary after completion of chemotherapy and radiotherapy to maintain follicle viability and support continued follicular development in female patients.
Collapse
Affiliation(s)
- Yongrui Du
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Reproductive Medicine, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin 300211, China
| | - Zaira Carranza
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Biology, Portland State University, 1825 SW Broadway, Portland, OR 97201, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, 987400 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kathleen Busman-Sahay
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Shally Wolf
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Shawn P Campbell
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, 987400 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob D Estes
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Mary Zelinski
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jing Xu
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Hao X, Anastácio A, Viñals-Ribé L, Santamaria Lacuesta A, Diakaki C, Alonso de Mena S, Liu K, Rodriguez-Wallberg KA. Follicle Rescue From Prepubertal Ovaries After Recent Treatment With Cyclophosphamide-An Experimental Culture System Using Mice to Achieve Mature Oocytes for Fertility Preservation. Front Oncol 2021; 11:682470. [PMID: 34631518 PMCID: PMC8497963 DOI: 10.3389/fonc.2021.682470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian tissue cryopreservation is the only feasible method for fertility preservation in prepubertal girls that will undergo gonadotoxic chemotherapy. To date, the only clinical use of cryopreserved tissue is by a later tissue retransplantation to the patient. Clinical challenges in fertility preservation of very young patients with cancer include time constraints that do not allow to retrieve the tissue for cryopreservation before starting chemotherapy and the preclusion of future ovarian tissue transplantation due to the risk of reintroduction of malignant cells in patients with systemic diseases. To overcome these two challenges, we investigated using an experimental model the feasibility of retrieving secondary follicles from ovaries of prepubertal mice after cyclophosphamide (CPA) treatment in increasing doses of 50, 75, and 100 mg/kg. The follicles were thereafter cultured and matured in vitro. The main outcomes included the efficiency of the method in terms of obtained matured oocytes and the safety of these potentially fertility preservative procedures in terms of analyses of oocyte competence regarding normality of the spindle and chromosome configurations. Our findings demonstrated that it was feasible to isolate and culture secondary follicles and to obtain mature oocytes from prepubertal mice ovaries recently treated with CPA. The efficiency of this method was highly demonstrated in the 100 mg/kg CPA group, with near 90% follicle survival rate after 12 days' culture, similarly to control. Around 80% of the follicles met the criteria to put into maturation, and more than 40% of them achieved metaphase II, with normal spindle and chromosome configurations observed. Suboptimal results were obtained in the 50 and 75 mg/kg CPA groups. These paradoxical findings towards CPA dose might probably reflect a more difficult selection of damaged growing follicles from ovaries recently treated with lower doses of CPA and a hampered ability to identify and discard those with reduced viability for the culture.
Collapse
Affiliation(s)
- Xia Hao
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Amandine Anastácio
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Laia Viñals-Ribé
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Ana Santamaria Lacuesta
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Christina Diakaki
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Sara Alonso de Mena
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden.,Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Xu F, Lawson MS, Bean Y, Ting AY, Pejovic T, De Geest K, Moffitt M, Mitalipov SM, Xu J. Matrix-free 3D culture supports human follicular development from the unilaminar to the antral stage in vitro yielding morphologically normal metaphase II oocytes. Hum Reprod 2021; 36:1326-1338. [PMID: 33681988 DOI: 10.1093/humrep/deab003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Can group culture with stage-specific anti-Müllerian hormone (AMH) modulation support human follicular development and oocyte maturation in vitro? SUMMARY ANSWER In the presence of FSH, AMH supplementation at the secondary-to-early antral stage followed by AMH depletion promotes the coordinated growth and function of human follicles during group culture, thereby yielding mature oocytes. WHAT IS KNOWN ALREADY Stage-specific AMH modulation promotes in-vitro development of nonhuman primate follicles. The group culture method supports nonhuman primate follicle growth from the primary to antral stage, producing developmentally competent oocytes. STUDY DESIGN, SIZE, DURATION Ovarian tissue samples were collected from 19 patients of reproductive age (22-47 years old having menstrual cycles) who underwent oophorectomy or hysterectomy for clinical purposes. Tissue pieces were cultured in a matrix-free system for 3 weeks followed by isolation of follicles for the subsequent 6-week individual or group culture. PARTICIPANTS/MATERIALS, SETTING, METHODS Pieces of ovarian cortical tissue were cultured to support primordial follicle activation and early-stage follicle growth. Secondary follicles isolated from cultured tissue were then randomly assigned to two groups for individual culture: control and AMH modulation, i.e., recombinant human AMH protein supplementation during the secondary-to-early antral stage followed by the addition of neutralizing anti-human AMH antibody. Secondary follicles were also cultured in groups with the same AMH modulation. Follicle survival, growth, steroid hormone and paracrine factor production, steroidogenic protein expression, as well as oocyte maturation and morphology were assessed. MAIN RESULTS AND THE ROLE OF CHANCE Follicles grew to the secondary stage during 3 weeks of ovarian tissue culture. In-vitro-developed follicles expressed AMH and levels of secreted AMH increased (P < 0.05) in the culture media over time. Secondary follicles isolated from cultured ovarian tissue survived and grew to the antral stage during 6 weeks of individual follicle culture. In-vitro-developed antral follicles produced granulosa and theca cell-derived steroid hormones and paracrine factors, which were detectable in the culture media. Germinal vesicle oocytes obtained from cultured follicles exhibited a perinucleolar chromatin rim configuration. AMH modulation did not alter follicle survival or oocyte maturation relative to those of the control follicles. However, follicle diameters, as well as steroid hormone and paracrine factor production, increased (P < 0.05) in the AMH-modulation group compared with the control group. Secondary follicles isolated from cultured ovarian tissue formed aggregates and grew to the antral stage during 6 weeks of group culture. In-vitro-developed antral follicles expressed steroidogenic enzymes and secreted steroid hormones were detectable in the culture media. Oocytes obtained from cultured follicle aggregates with AMH-modulation progressed to the metaphase II stage after IVM, containing a normal-sized first polar body and meiotic spindle. Oocytes exhibited a typical ultrastructure. LIMITATIONS, REASONS FOR CAUTION Follicles were obtained from fresh ovarian tissue of adult patients. Oocyte maturation rates were relatively low and oocytes were assessed by morphological evaluation. Owing to the lack of a control group, the beneficial effects of AMH modulation remained undetermined for the group culture in this study. WIDER IMPLICATIONS OF THE FINDINGS Stage-specific AMH modulation supports human follicular development in the matrix-free group culture, which is consistent with previously reported AMH actions on growing follicles in nonhuman primates. Oocytes generated by in-vitro-developed follicles achieve meiotic maturation with a typical morphology and ultrastructure, which supports in-vitro follicle maturation as a potential approach for fertility preservation in women. STUDY FUNDING/COMPETING INTEREST(S) NICHD R01HD082208 and NIH Office of the Director P51OD011092. The authors have no competing interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Fuhua Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maralee S Lawson
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Yukie Bean
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Tanja Pejovic
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Koen De Geest
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa Moffitt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shoukhrat M Mitalipov
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.,Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jing Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.,Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Xu F, Wolf S, Green O, Xu J. Vitamin D in follicular development and oocyte maturation. Reproduction 2021; 161:R129-R137. [PMID: 33835047 PMCID: PMC8105291 DOI: 10.1530/rep-20-0608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Vitamin D (VD) is a secosteroid hormone synthesized predominantly in the skin upon UV light exposure, which can also be obtained from dietary sources. In target cells, the bioactive VD binds to specific VD receptor to regulate downstream transcription of genes that are involved in a wide range of cellular processes. There is an increasing recognition that the proper physiological levels of VD are critical for optimizing reproductive potential in women. The direct VD action in the ovary was first suggested in the 1980s. Since then, research has attempted to determine the role of VD in follicular development and oocyte maturation in animal models and clinical settings. However, data published to date are inconclusive due to the complexity in VD metabolism and the fact that VD actions are pervasive in regulating physiological functions in various systems, including the reproductive, endocrine and nervous systems that control reproduction. This review summaries in vitro, in vivo, and clinical evidence regarding VD metabolism and signaling in the ovary, as well as VD-regulated or VD-associated ovarian follicular development, steroidogenic function, and oocyte maturation. It is suggested that adequate animal models are needed for well-controlled studies to unravel molecular mechanisms of VD action in the ovary. For clinical studies, follicular development and function may be evaluated more effectively in a relatively homogeneous patient population under a well-controlled experimental design. A comprehensive understanding of VD-regulated folliculogenesis and oogenesis will provide critical insight into the impact of VD in female reproductive health.
Collapse
Affiliation(s)
- Fuhua Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Shally Wolf
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - O'ryai Green
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Jing Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
10
|
He Y, Meng K, Wang X, Dong Z, Zhang Y, Quan F. Comparison of Bovine Small Antral Follicle Development in Two- and Three-Dimensional Culture Systems. AN ACAD BRAS CIENC 2020; 92:e20180935. [PMID: 33146258 DOI: 10.1590/0001-3765202020180935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
To compare the effects of two-(2D, microplate) and three-dimensional (3D, alginate) culture systems on the in vitro growth of small antral follicles in cattle, individual follicles were separately cultured in the two culture systems for 8 days. Half of the culture medium was replaced by fresh medium every 2 days; the former medium was used to assess the amount of follicular hormone secretion using ELISA. Individual follicle morphology, diameter, and survival rate were recorded every alternate day. The results showed that in 4 days, there was no significant difference between the two systems, except that the growth rate of follicles in 2D system was relatively faster. After 4 days, estradiol concentration in 3D system was higher than that in 2D system. However, progesterone concentration was lower than that in the 2D system. The survival rate and oocyte quality of follicles in 2D system were significantly lower than those in 3D system on day 8. The follicle diameter slightly increased (30-60 μm) in the entire process. Taken together, for in vitro culture of follicles within 4 days, the 2D culture system is more suitable. However, when the culture duration is >4 days, the 3D culture system is more suitable.
Collapse
Affiliation(s)
- Yuanyuan He
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Kai Meng
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Xiaomei Wang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Zhihang Dong
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Yong Zhang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Fusheng Quan
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| |
Collapse
|
11
|
Xu F, Lawson MS, Campbell SP, Tkachenko OY, Park BS, Bishop CV, Xu J. Stage-dependent actions of antimüllerian hormone in regulating granulosa cell proliferation and follicular function in the primate ovary. F&S SCIENCE 2020; 1:161-171. [PMID: 34355206 PMCID: PMC8329754 DOI: 10.1016/j.xfss.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the direct action and physiological role of antimüllerian hormone (AMH) in regulating ovarian follicular development and function in vivo in primates. DESIGN Animals were assigned to six treatment sequences in a crossover design study. Intraovarian infusion was performed during the follicular phase of the menstrual cycle with agents including: control vehicle; recombinant human AMH (rhAMH); and neutralizing anti-human AMH antibody (AMHAb). Before ovariectomy after the final treatment, the animals received intravenous injections of bromodeoxyuridine (BrdU). SETTING National primate research center. ANIMALS Adult female rhesus macaques (Macaca mulatta). INTERVENTIONS None. MAIN OUTCOME MEASURES Cycle length, follicle cohorts, and serum steroid levels were assessed. Ovarian histology, as well as granulosa cell (GC) proliferation and oocyte viability, were evaluated. RESULTS In vehicle-infused ovaries, a dominant follicle was observed at midcycle E2 peak. However, rhAMH-treated ovaries exhibited an increased number of small antral follicles, whereas AMHAb-treated ovaries developed multiple large antral follicles. Serum E2 levels in the follicular phase decreased after rhAMH infusion and increased after AMHAb infusion. The rhAMH infusion increased serum T levels. Whereas early-growing follicles of rhAMH-treated ovaries contained BrdU-positive GCs, antral follicles containing BrdU-positive GCs were identified in AMHAb-treated ovaries. Autophagy was observed in oocytes of early-growing and antral follicles exposed to AMHAb and rhAMH, respectively. CONCLUSIONS AMH enhanced early-stage follicle growth, but prevented antral follicle development and function via its stage-dependent regulation of GC proliferation and oocyte viability. This study provides information relevant to the pathophysiology of ovarian dysfunction and the treatment of infertility.
Collapse
Affiliation(s)
- Fuhua Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland
| | - Maralee S. Lawson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton
| | - Shawn P. Campbell
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland
| | - Olena Y. Tkachenko
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton
| | - Byung S. Park
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland
| | - Cecily V. Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton
- Department of Animal and Rangeland Sciences, College of Agriculture, Oregon State University, Corvallis, Oregon
| | - Jing Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton
| |
Collapse
|
12
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
13
|
Hensen K, Pook M, Sikut A, Org T, Maimets T, Salumets A, Kurg A. Utilising FGF2, IGF2 and FSH in serum-free protocol for long-term in vitro cultivation of primary human granulosa cells. Mol Cell Endocrinol 2020; 510:110816. [PMID: 32294491 DOI: 10.1016/j.mce.2020.110816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/24/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Human granulosa cells acquired as leftover from IVF treatment can be used to study infertility problems and are a valuable tool in the research of follicle maturation and ovulation. There is a need for more defined and long-term culture protocols for studying the response of granulosa cells upon treatment with selected hormones/chemicals. In the current study, we tested the effect of adding FGF2, IGF2 and FSH into defined basal medium in order to find culture conditions that would support proliferation of cumulus and mural granulosa cells along with the expression of common granulosa cell type markers such as FSHR, AMHR2, LHR and CYP19A1. We found that FGF2, IGF2 together with FSH helped to retain granulosa cell marker expression while supporting cell survival at least for two weeks of culture. The defined serum-free culture conditions for long-term culturing will be valuable in providing new standards in the research of human granulosa cells.
Collapse
Affiliation(s)
- Kati Hensen
- Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Martin Pook
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Anu Sikut
- Women's Clinic of Tartu University Hospital, Estonia, L. Puusepa 8, 51014, Tartu, Estonia
| | - Tõnis Org
- Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Toivo Maimets
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Andres Salumets
- The Competence Centre on Health Technologies, Tartu, Teaduspargi 13, 50411, Tartu, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, 50406, Estonia
| | - Ants Kurg
- Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.
| |
Collapse
|
14
|
Wang K, Xu F, Campbell SP, Hart KD, Durham T, Maylie J, Xu J. Rapid actions of anti-Müllerian hormone in regulating synaptic transmission and long-term synaptic plasticity in the hippocampus. FASEB J 2019; 34:706-719. [PMID: 31914642 DOI: 10.1096/fj.201902217r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Anti-Müllerian hormone (Amh) is a peptide factor that is known to regulate sexual differentiation and gonadal function in mammals. Although Amh is also suggested to be associated with cognitive development and function in the postnatal brain, little is known about its expression or direct effects on neuronal activities in the hippocampus. Therefore, we assessed Amh and its receptor expression in the hippocampus of male and female mice using PCR, Western blot, and immunofluorescence staining. While Amh-specific receptor expression was comparable between males and females, mRNA and protein levels of Amh were higher in females than those of males. Electrophysiological recordings on acute hippocampal slices showed that exogenous Amh protein addition increased synaptic transmission and long-term synaptic plasticity at the Cornu Ammonis (CA) 3-CA1 synapses. Amh exposure also increased the excitatory postsynaptic potential at CA1 synapses. Our findings support direct and rapid actions of Amh as a paracrine and/or autocrine factor in regulating hippocampal neuronal activities. Data provide functional evidence of Amh-mediated postsynaptic modulation of synaptic transmission and Amh-regulated long-term synaptic plasticity in the hippocampus. These results suggest a potential role of Amh in learning and memory, and a possible cause of the sex differences in cognitive development and function.
Collapse
Affiliation(s)
- Kang Wang
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Fuhua Xu
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Shawn P Campbell
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kyle D Hart
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tyler Durham
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - James Maylie
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jing Xu
- School of Medicine, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
15
|
Kim SY, Cho GJ, Davis JS. Consequences of chemotherapeutic agents on primordial follicles and future clinical applications. Obstet Gynecol Sci 2019; 62:382-390. [PMID: 31777733 PMCID: PMC6856479 DOI: 10.5468/ogs.2019.62.6.382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
The ovarian reserve is necessary for female fertility and endocrine health. Commonly used cancer therapies diminish the ovarian reserve, thus, resulting in primary ovarian insufficiency, which clinically presents as infertility and endocrine dysfunction. Prepubertal children who have undergone cancer therapies often experience delayed puberty or cannot initiate puberty and require endocrine support to maintain a normal life. Thus, developing an effective intervention to prevent loss of the ovarian reserve is an unmet need for these cancer patients. The selection of adjuvant therapies to protect the ovarian reserve against cancer therapies underlies the mechanism of loss of primordial follicles (PFs). Several theories have been proposed to explain the loss of PFs. The "burn out" theory postulates that chemotherapeutic agents activate dormant PFs through an activation pathway. Another theory posits that chemotherapeutic agents destroy PFs through an "apoptotic pathway" due to high sensitivity to DNA damage. However, the mechanisms causing loss of the ovarian reserve remains largely speculative. Here, we review current literature in this area and consider the mechanisms of how gonadotoxic therapies deplete PFs in the ovarian reserve.
Collapse
Affiliation(s)
- So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - John S. Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
16
|
Xu J, Lawson MS, Mitalipov SM, Park BS, Xu F. Stage-specific modulation of antimüllerian hormone promotes primate follicular development and oocyte maturation in the matrix-free three-dimensional culture. Fertil Steril 2019; 110:1162-1172. [PMID: 30396561 DOI: 10.1016/j.fertnstert.2018.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/25/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study whether follicular growth and oocyte maturation can be improved by antimüllerian hormone (AMH) modulation at specific stages of follicular development. DESIGN Primary and secondary follicles were cultured in a matrix-free system and were assigned to the control group and the group with AMH supplementation during the preantral stage and neutralizing AMH antibody addition during the antral stage. SETTING National primate research center. ANIMAL(S) Adult, female rhesus macaques (Macaca mulatta). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Follicle survival, growth, steroid and paracrine factor production, and oocyte competence were evaluated. Follicles were assessed for expression of genes that are critical for gonadotropin signaling, cumulus cell glycolysis, and oocyte quality. RESULT(S) Primary follicles formed "organoids" and developed to the antral stage in group culture. AMH exposure during the preantral stage increased organoid diameters. Oocytes from the AMH-treated organoids had greater diameters and matured to the metaphase II (MII) stage. Secondary follicles developed to the antral stage during individual culture. The AMH exposure during the preantral stage and AMH antibody treatment during the antral stage increased follicle diameters, vascular endothelial growth factor and follistatin production, differentiation factor 9 expression, and oocyte diameters. The MII oocytes from the AMH-modulated group developed to the morula stage after IVF, with one to the blastocyst stage. CONCLUSION(S) AMH supplementation at the preantral stage and depletion at the antral stage enhanced primate follicular development and oocyte competence in vitro. The improved embryonic development supports in vitro follicle maturation as a potential approach for fertility preservation.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon; Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, Oregon; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, Oregon.
| | - Maralee S Lawson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Shoukhrat M Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, Oregon
| | - Byung S Park
- OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, Oregon
| | - Fuhua Xu
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Bagnjuk K, Stöckl JB, Fröhlich T, Arnold GJ, Behr R, Berg U, Berg D, Kunz L, Bishop C, Xu J, Mayerhofer A. Necroptosis in primate luteolysis: a role for ceramide. Cell Death Discov 2019; 5:67. [PMID: 30774995 PMCID: PMC6370808 DOI: 10.1038/s41420-019-0149-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
The corpus luteum (CL) is a transient endocrine organ, yet molecular mechanisms resulting in its demise are not well known. The presence of phosphorylated mixed lineage kinase domain-like pseudokinase pMLKL(T357/S358) in human and nonhuman primate CL samples (Macaca mulatta and Callithrix jacchus) implied that necroptosis of luteal cells may be involved. In M. mulatta CL, pMLKL positive staining became detectable only from the mid-late luteal phase onwards, pointing to necroptosis during regression of the CL. Cell death, including necroptosis, was previously observed in cultures of human luteal granulosa cells (GCs), an apt model for the study of the human CL. To explore mechanisms of necroptotic cell death in GCs during culture, we performed a proteomic analysis. The levels of 50 proteins were significantly altered after 5 days of culture. Interconnectivity analysis and immunocytochemistry implicated specifically the ceramide salvage pathway to be enhanced. M. mulatta CL transcriptome analysis indicated in vivo relevance. Perturbing endogenous ceramide generation by fumonisin B1 (FB1) and addition of soluble ceramide (C2-CER) yielded opposite actions on viability of GCs and therefore supported the significance of the ceramide pathway. Morphological changes indicated necrotic cell death in the C2-CER treated group. Studies with the pan caspase blocker zVAD-fmk or the necroptosis blocker necrosulfonamid (NSA) further supported that C2-CER induced necroptosis. Our data pinpoint necroptosis in a physiological process, namely CL regression. This raises the possibility that the primate CL could be rescued by pharmacological inhibition of necroptosis or by interaction with ceramide metabolism.
Collapse
Affiliation(s)
- Konstantin Bagnjuk
- 1Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, 82152 Germany
| | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, Feodor-Lynen Strasse 25, Munich, 81375 Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, Feodor-Lynen Strasse 25, Munich, 81375 Germany
| | - Georg Josef Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, Feodor-Lynen Strasse 25, Munich, 81375 Germany
| | - Rüdiger Behr
- 3Platform Degenerative Diseases, German Primate Center, Kellnerweg 4, Göttingen, 37077 Germany
| | - Ulrike Berg
- A.R.T. Bogenhausen, Prinzregentenstrasse 69, Munich, 81675 Germany
| | - Dieter Berg
- A.R.T. Bogenhausen, Prinzregentenstrasse 69, Munich, 81675 Germany
| | - Lars Kunz
- Department Biology II, Division of Neurobiology, LMU, Grosshaderner Strasse 2, Planegg, 82152 Germany
| | - Cecily Bishop
- 6Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006 USA
| | - Jing Xu
- 6Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006 USA
| | - Artur Mayerhofer
- 1Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, 82152 Germany
| |
Collapse
|
18
|
Bishop CV, Mishler EC, Takahashi DL, Reiter TE, Bond KR, True CA, Slayden OD, Stouffer RL. Chronic hyperandrogenemia in the presence and absence of a western-style diet impairs ovarian and uterine structure/function in young adult rhesus monkeys. Hum Reprod 2019; 33:128-139. [PMID: 29190387 DOI: 10.1093/humrep/dex338] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does chronic hyperandrogenemia beginning at menarche, in the absence and presence of a western-style diet (WSD), alter ovarian and uterine structure-function in young adult rhesus monkeys? SUMMARY ANSWER Phenotypic alterations in ovarian and uterine structure/function were induced by exogenous testosterone (T), and compounded in the presence of a WSD (T+WSD). WHAT IS KNOWN ALREADY Hyperandrogenemia is a well-established component of PCOS and is observed in adolescent girls, indicating a potential pubertal onset of disease symptoms. Obesity is often associated with hyperandrogenemia and it is hypothesized that metabolic dysfunction exacerbates PCOS symptoms. STUDY DESIGN, SIZE, DURATION Macaque females (n = 40) near the onset of menarche (~2.5 years of age) were assigned to a 2 by 2 factorial cohort design. Effects on reproductive characteristics were evaluated after 3 years of treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS Rhesus macaques (Macaca mulatta) were fed either a normal balanced diet (n = 20) or a WSD (n = 20). Additionally, implants containing cholesterol (n = 20) or T (n = 20) were implanted subcutaneously to elevate serum T approximately 5-fold. This resulted in treatment groups of controls (C), T, WSD and T+WSD (n = 10/group). Vaginal swabbing was performed daily to detect menses. After 3 years of treatment, daily serum samples from one menstrual cycle were assayed for hormone levels. Ovarian structure was evaluated in the early follicular phase by 3D/4D ultrasound. Uterine endometrial size and ovarian/luteal vascular function was also evaluated in subgroups (n = 6/group) in the late follicular and mid-luteal phases by 3D/4D ultrasound and contrast-enhanced ultrasound, respectively. Expression of steroid hormone receptors and markers of decidualization and endometrial receptivity were assessed in endometrial biopsies at mid-luteal phase. MAIN RESULTS AND THE ROLE OF CHANCE Approximately 90% of menstrual cycles appeared ovulatory with no differences in frequency or duration between groups. Serum estradiol (E2) levels during the early follicular phase were greatest in the T alone group, but reduced in T+WSD (P < 0.02). Serum LH was elevated in the T group (P < 0.04); however, there were no differences among groups in FSH levels (P > 0.13). Ovarian size at menses tended to be greater in the WSD groups (P < 0.07) and antral follicles ≥1 mm were more numerous in the T+WSD group (P < 0.05). Also, females in T and T+WSD groups displayed polycystic ovarian morphology (PCOM) at greater frequency than C or WSD groups (P < 0.01). Progesterone (P4) levels during the luteal phase were reduced in the T+WSD group compared to C and T groups (P < 0.05). Blood volume (BV) and vascular flow (VF) within the corpus luteum was reduced in all treatment groups compared to C (P < 0.01, P = 0.03), with the WSD alone group displaying the slowest BV and VF (P < 0.05). C and WSD groups displayed endometrial glands at mid-luteal phase with low estrogen receptor 1 (ESR1) and progesterone receptor (PGR) mRNA and immunohistochemical staining in the functionalis zone, but appreciable PGR in the stroma. In contrast, T and T+WSD treatment resulted in glands with less secretory morphology, high ESR1 expression in the glandular epithelium and low PGR in the stroma. Endometrial levels of TIMP3 and MMP26 mRNA and immunostaining were also decreased in the T and T+WSD groups, whereas AR expression was unchanged. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION Females are young adults, so effects could change as they reach prime reproductive age. The T level generated for hyperandrogenemia may be somewhat greater than the 3-4-fold increase observed in adolescent girls, but markedly less than those observed in male monkeys or adolescent boys. WIDER IMPLICATIONS OF THE FINDINGS Alterations to ovarian and uterine structure-function observed in T and, in particular, T+WSD-treated female macaques are consistent with some of the features observed in women diagnosed with polycystic ovary syndrome (PCOS), and suggest impaired fertility. STUDY FUNDING/COMPETING INTEREST(S) Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) of the National Institutes of Health (NIH) under Award Number P50HD071836 (to RLS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Additional funding was provided by Office of the Director, NIH under Award Number P51OD011092 (Support for National Primate Research Center). Authors declare no competing interests.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Emily C Mishler
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Diana L Takahashi
- Cardiometabolic Health Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Taylor E Reiter
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Kise R Bond
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Cadence A True
- Cardiometabolic Health Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Ov D Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.,Cardiometabolic Health Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.,Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.,Cardiometabolic Health Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.,Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
19
|
Xu J, Lawson MS, Xu F, Du Y, Tkachenko OY, Bishop CV, Pejovic-Nezhat L, Seifer DB, Hennebold JD. Vitamin D3 Regulates Follicular Development and Intrafollicular Vitamin D Biosynthesis and Signaling in the Primate Ovary. Front Physiol 2018; 9:1600. [PMID: 30487754 PMCID: PMC6246691 DOI: 10.3389/fphys.2018.01600] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
There is an increasing recognition that vitamin D plays important roles in female reproduction. Recent studies demonstrated that 1α,25-dihydroxyvitamin D3 (VD3), the biologically active form of vitamin D, improved ovarian follicle survival and growth in vitro. Therefore, we investigated the direct effects of VD3 at the specific preantral and antral stages of follicular development, and tested the hypothesis that vitamin D receptor (VDR) and enzymes critical for vitamin D biosynthesis are expressed in the primate ovary. Fourteen adult rhesus macaques provided ovarian tissue. Secondary and antral follicles were isolated for PCR analysis on VDR, vitamin D3 25-hydroxylase, and 25-hydroxyvitamin D3-1α-hydroxylase. VDR protein localization was determined by immunohistochemistry on ovarian sections. Isolated secondary follicles were cultured under conditions of control and VD3 supplementation during the preantral or antral stage. Follicle survival, growth, steroid and anti-Müllerian hormone (AMH) production, as well as oocyte maturation were evaluated. In vivo- and in vitro-developed follicles were also assessed for genes that are critical for vitamin D biosynthesis and signaling, gonadotropin signaling, steroid and paracrine factor production, and oocyte quality. The mRNA encoding VDR, 25-hydroxylase, and 1α-hydroxylase was detectable in in vivo- and in vitro-developed preantral and antral follicles. The 25-hydroxylase was elevated in cultured follicles relative to in vivo-developed follicles, which further increased following VD3 exposure. VD3 treatment increased 1α-hydroxylase in in vitro-developed antral follicles. The absence of VD3 during culture decreased VDR expression in in vitro-developed antral follicles, which was restored to levels comparable to those of in vivo-developed antral follicles by VD3 supplementation. Positive immunostaining for VDR was detected in the nucleus and cytoplasm of granulosa cells and oocytes. While only survival was improved in preantral follicles treated with VD3, VD3 supplementation promoted both survival and growth of antral follicles with increased estradiol and AMH production, as well as oocyte maturation. Thus, Vitamin D biosynthesis and signaling systems are expressed in primate ovarian follicles. Our findings support a role for VD3 in regulating follicular development in a stage-dependent manner, as well as the intrafollicular vitamin D biosynthesis and signaling, directly in the ovary.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Maralee S. Lawson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Fuhua Xu
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Yongrui Du
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Reproductive Medicine, Tianjin Center Hospital of Gynecology Obstetrics, Tianjin, China
| | - Olena Y. Tkachenko
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Cecily V. Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Lucas Pejovic-Nezhat
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - David B. Seifer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Jon D. Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
20
|
Almeida FRCL, Costermans NGJ, Soede NM, Bunschoten A, Keijer J, Kemp B, Teerds KJ. Presence of anti-Müllerian hormone (AMH) during follicular development in the porcine ovary. PLoS One 2018; 13:e0197894. [PMID: 30063719 PMCID: PMC6067700 DOI: 10.1371/journal.pone.0197894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anti-Müllerian hormone (AMH) is expressed by granulosa cells of developing follicles and plays an inhibiting role in the cyclic process of follicular recruitment by determining follicle-stimulating hormone threshold levels. Knowledge of AMH expression in the porcine ovary is important to understand the reproductive efficiency in female pigs. RESEARCH AIM In the present study we investigated the expression of AMH during follicular development in prepubertal and adult female pigs by immunohistochemistry, laser capture micro-dissection and RT-qPCR. RESULTS AND CONCLUSION Although in many aspects the immunohistochemical localization of AMH in the porcine ovary does not differ from other species, there are also some striking differences. As in most species, AMH appears for the first time during porcine follicular development in the fusiform granulosa cells of recruited primordial follicles and continues to be present in granulosa cells up to the antral stage. By the time follicles reach the pre-ovulatory stage, AMH staining intensity increases significantly, and both protein and gene expression is not restricted to granulosa cells; theca cells now also express AMH. AMH continues to be expressed after ovulation in the luteal cells of the corpus luteum, a phenomenon unique to the porcine ovary. The physiological function of AMH in the corpus luteum is at present not clear. One can speculate that it may contribute to the regulation of the cyclic recruitment of small antral follicles. By avoiding premature exhaustion of the ovarian follicular reserve, AMH may contribute to optimization of reproductive performance in female pigs.
Collapse
Affiliation(s)
- Fernanda R. C. L. Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Natasja G. J. Costermans
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
- Human and Animal Physiology, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Nicoline M. Soede
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Annelies Bunschoten
- Human and Animal Physiology, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Katja J. Teerds
- Human and Animal Physiology, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
- * E-mail:
| |
Collapse
|
21
|
Du Y, Bagnjuk K, Lawson MS, Xu J, Mayerhofer A. Acetylcholine and necroptosis are players in follicular development in primates. Sci Rep 2018; 8:6166. [PMID: 29670172 PMCID: PMC5906600 DOI: 10.1038/s41598-018-24661-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/04/2018] [Indexed: 12/19/2022] Open
Abstract
Acetylcholine (ACh) in the ovary and its actions were linked to survival of human granulosa cells in vitro and improved fertility of rats in vivo. These effects were observed upon experimental blockage of the ACh-degrading enzyme (ACH esterase; ACHE), by Huperzine A. We now studied actions of Huperzine A in a three-dimensional culture of macaque follicles. Because a form of programmed necrotic cell death, necroptosis, was previously identified in human granulosa cells in vitro, we also studied actions of necrostatin-1 (necroptosis inhibitor). Blocking the breakdown of ACh by inhibiting ACHE, or interfering with necroptosis, did not improve the overall follicle survival, but promoted the growth of macaque follicles from the secondary to the small antral stage in vitro, which was correlated with oocyte development. The results from this translational model imply that ovarian function and fertility in primates may be improved by pharmacological interference with ACHE actions and necroptosis.
Collapse
Affiliation(s)
- Yongrui Du
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
- Department of Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, No 156 Nankai Sanma Road, Nankai District, Tianjin, 300100, China
| | - Konstantin Bagnjuk
- BMC Munich, Cell Biology, Anatomy III, Ludwig-Maximilians-University, Grosshaderner Str. 9, D-82152, Planegg, Martinsried, Germany
| | - Maralee S Lawson
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
| | - Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Artur Mayerhofer
- BMC Munich, Cell Biology, Anatomy III, Ludwig-Maximilians-University, Grosshaderner Str. 9, D-82152, Planegg, Martinsried, Germany.
| |
Collapse
|
22
|
Xu J, Xu F, Lawson MS, Tkachenko OY, Ting AY, Kahl CA, Park BS, Stouffer RR, Bishop CV. Anti-Müllerian hormone is a survival factor and promotes the growth of rhesus macaque preantral follicles during matrix-free culture. Biol Reprod 2018; 98:197-207. [PMID: 29293939 PMCID: PMC6248587 DOI: 10.1093/biolre/iox181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/22/2017] [Indexed: 11/14/2022] Open
Abstract
Anti-Müllerian hormone (AMH) plays a key role during ovarian follicular development, with local actions associated with a dynamic secretion profile by growing follicles. While results for AMH effects on antral follicle growth and function are consistent among studies in various species, any effects on preantral follicle development remain controversial. Therefore, experiments were conducted to investigate the direct actions and role of AMH during follicle development at the preantral stage. Macaque-specific short-hairpin RNAs (shRNAs) targeting AMH mRNA were incorporated into adenoviral vectors to decrease AMH gene expression in rhesus macaque follicles. Secondary follicles were isolated from adult macaque ovaries and cultured individually in the ultra-low-attachment dish containing defined medium supplemented with follicle-stimulating hormone and insulin for 5 weeks. Follicles were randomly assigned to treatment groups: (a) control, (b) nontargeting control shRNA-vector, (c) AMH shRNA-vector, (d) AMH shRNA-vector + recombinant human AMH, and (e) recombinant human AMH. Follicle survival and growth were assessed. Culture media were analyzed for steroid hormone and paracrine factor concentrations. For in vivo study, the nontargeting control shRNA-vector and AMH shRNA-vector were injected into macaque ovaries. Ovaries were collected 9 days postinjection for morphology and immunohistochemistry assessment. Decreased AMH expression reduced preantral follicle survival and growth in nonhuman primates. Supplemental AMH treatment in the culture media promoted preantral follicle growth to the small antral stage in vitro with increased steroid hormone and paracrine factor production, as well as oocyte maturation. These data demonstrate that AMH is a critical follicular paracrine/autocrine factor positively impacting preantral follicle survival and growth in primates.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Fuhua Xu
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Maralee S Lawson
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Olena Y Tkachenko
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christoph A Kahl
- Molecular Virology Support Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Byung S Park
- Oregon Health & Science University-Portland State University School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard R Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
23
|
Cadoret V, Frapsauce C, Jarrier P, Maillard V, Bonnet A, Locatelli Y, Royère D, Monniaux D, Guérif F, Monget P. Molecular evidence that follicle development is accelerated in vitro compared to in vivo. Reproduction 2017; 153:493-508. [DOI: 10.1530/rep-16-0627] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
In this study, we systematically compared the morphological, functional and molecular characteristics of granulosa cells and oocytes obtained by a three-dimensional in vitro model of ovine ovarian follicular growth with those of follicles recovered in vivo. Preantral follicles of 200 µm diameter were recovered and cultured up to 950 µm over a 20-day period. Compared with in vivo follicles, the in vitro culture conditions maintained follicle survival, with no difference in the rate of atresia. However, the in vitro conditions induced a slight decrease in oocyte growth rate, delayed antrum formation and increased granulosa cell proliferation rate, accompanied by an increase and decrease in CCND2 and CDKN1A mRNA expression respectively. These changes were associated with advanced granulosa cell differentiation in early antral follicles larger than 400 µm diameter, regardless of the presence or absence of FSH, as indicated by an increase in estradiol secretion, together with decreased AMH secretion and expression, as well as increased expression of GJA1, CYP19A1, ESR1, ESR2, FSHR, INHA, INHBA, INHBB and FST. There was a decrease in the expression of oocyte-specific molecular markers GJA4, KIT, ZP3, WEE2 and BMP15 in vitro compared to that in vivo. Moreover, a higher percentage of the oocytes recovered from cultured follicles 550 to 950 µm in diameter was able to reach the metaphase II meiosis stage. Overall, this in vitro model of ovarian follicle development is characterized by accelerated follicular maturation, associated with improved developmental competence of the oocyte, compared to follicles recovered in vivo.
Collapse
|
24
|
Xu J, Hennebold JD, Seifer DB. Direct vitamin D3 actions on rhesus macaque follicles in three-dimensional culture: assessment of follicle survival, growth, steroid, and antimüllerian hormone production. Fertil Steril 2016; 106:1815-1820.e1. [PMID: 27678030 DOI: 10.1016/j.fertnstert.2016.08.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the direct actions of active 1,25-dihydroxy vitamin D3 (VD3) upon primate follicular development at specific stages of folliculogenesis. DESIGN Secondary preantral follicles were isolated from rhesus monkeys ovaries, encapsulated in alginate, and cultured for 40 days. Follicles were randomly assigned to experimental groups of control, low-dose VD3 (LVD3; 25 pg/mL), and high-dose VD3 (HVD3; 100 pg/mL). SETTING National primate research center. ANIMAL(S) Adult, female rhesus macaques (Macaca mulatta). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Follicle survival and growth, as well as oocyte size, were assessed. Progesterone (P4), androstenedione (A4), E2, and antimüllerian hormone (AMH) concentrations in culture media were measured. RESULT(S) Compared with the control group, LVD3 increased preantral follicle survival at week 2 by >66%, while HVD3 increased antral follicle diameters at week 5. Follicles with diameters ≥500 μm at week 5 were categorized as fast-growing follicles. Higher percentages of fast-growing follicles were obtained after HVD3 treatment. Although P4, A4, and E2 production by antral follicles was not altered by VD3, AMH concentrations were 36% higher in the LVD3 group relative to controls at week 5. Oocytes with larger diameters were retrieved from antral follicles developed in both LVD3 and HVD3 groups compared with controls. CONCLUSION(S) The addition of LVD3 increased preantral follicle survival and maintained AMH production by antral follicles, while HVD3 improved antral follicle growth. VD3 supplement promoted oocyte growth in in vitro-developed follicles. Direct actions of VD3 on the primate follicle appear to be both dose and stage dependent.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, Oregon.
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David B Seifer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|