1
|
Jüppner H. Pseudohypoparathyroidism: complex disease variants with unfortunate names. J Mol Endocrinol 2024; 72:e230104. [PMID: 37965945 PMCID: PMC10843601 DOI: 10.1530/jme-23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1-13 resulting in characteristic abnormalities referred to as Albright's hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Badhe PV, Patil S, Vikram Reddy G, Sheshadri H, Jain S, Nikumbh T. Slipped capital femoral epiphysis as primary presentation in an adolescent with primary hyperparathyroidism due to ectopic mediastinal parathyroid adenoma. Clin Case Rep 2023; 11:e7498. [PMID: 37361665 PMCID: PMC10288011 DOI: 10.1002/ccr3.7498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Key Clinical Message Ectopic mediastinal parathyroid adenoma causes primary hyperparathyroidism presenting as hypercalcemia. When children with hypercalcemia present with slipped capital femoral epiphysis, a detailed evaluation for hypercalcemia must be done before surgery. Abstract The association between slipped capital femoral epiphysis (SCFE) and hyperparathyroidism has been reported and is rare. Each is known to affect different age groups. We report a case of a 13-year-old boy with SCFE and primary HPT leading to hypercalcemia and skeletal deformities.
Collapse
Affiliation(s)
| | | | - G. Vikram Reddy
- Department of RadiologySeth GSMC and KEM hospitalMumbaiIndia
| | | | | | - Tejas Nikumbh
- Department of Internal MedicineThe Wright Center for Graduate Medical EducationScrantonPennsylvaniaUSA
| |
Collapse
|
3
|
Milioto A, Reyes M, Hanna P, Kiuchi Z, Turan S, Zeve D, Agarwal C, Grigelioniene G, Chen A, Mericq V, Frangos M, Ten S, Mantovani G, Salusky IB, Tebben P, Jüppner H. Lack of GNAS Remethylation During Oogenesis May Be a Cause of Sporadic Pseudohypoparathyroidism Type Ib. J Clin Endocrinol Metab 2022; 107:e1610-e1619. [PMID: 34791361 PMCID: PMC8947795 DOI: 10.1210/clinem/dgab830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/11/2022]
Abstract
CONTEXT Pseudohypoparathyroidism type Ib (PHP1B) is characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone resistance in the proximal renal tubules. Maternal pathogenic STX16/GNAS variants leading to maternal epigenetic GNAS changes impair expression of the stimulatory G protein alpha-subunit (Gsα) thereby causing autosomal dominant PHP1B. In contrast, genetic defects responsible for sporadic PHP1B (sporPHP1B) remain mostly unknown. OBJECTIVE Determine whether PHP1B encountered after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) causes GNAS remethylation defects similar to those in sporPHP1B. DESIGN Retrospective analysis. RESULTS Nine among 36 sporPHP1B patients investigated since 2000, all with loss of methylation (LOM) at the 3 maternal GNAS differentially methylated regions (DMRs) and gain of methylation at the paternal NESP DMR, had been conceived through IVF or ICSI. Besides abnormal GNAS methylation, IVF/ICSI PHP1B cases revealed no additional imprinting defects. Three of these PHP1B patients have dizygotic twins, and 4 have IVF/ICSI-conceived siblings, all with normal GNAS methylation; 2 unaffected younger siblings were conceived naturally. CONCLUSION Sporadic and IVF/ICSI-conceived PHP1B patients revealed indistinguishable epigenetic changes at all 4 GNAS DMRs, thus suggesting a similar underlying disease mechanism. Given that remethylation at the 3 maternal DMRs occurs during oogenesis, male factors are unlikely to cause LOM postfertilization. Instead, at least some of the sporPHP1B variants could be caused by a defect or defects in an oocyte-expressed gene that is required for fertility and for re-establishing maternal GNAS methylation imprints. It remains uncertain, however, whether the lack of GNAS remethylation alone and the resulting reduction in Gsα expression is sufficient to impair oocyte maturation.
Collapse
Affiliation(s)
- Angelo Milioto
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick Hanna
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zentaro Kiuchi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Daniel Zeve
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
| | | | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Ang Chen
- Any Chen, Arizona Kidney Disease and Hypertension Center, Flagstaff, AZ, USA
| | - Veronica Mericq
- Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| | | | - Svetlana Ten
- Consultant of Pediatric Endocrinology, Richmond University Medical Center, Staten Island, NY, USA
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Isidro B Salusky
- Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peter Tebben
- Department of Internal Medicine and Pediatrics, Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Genetic Disorders of Calcium and Phosphorus Metabolism. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this review, we describe genetic mutations affecting metabolic pathways of calcium and phosphorus homeostasis. Calcium and phosphorus homeostasis has tight hormonal regulation by three major hormones: vitamin D, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). We describe the physiology and pathophysiology of disorders, their biochemical profile, clinical characteristics, diagnostics, and treatments.
Collapse
|
5
|
Hara-Isono K, Matsubara K, Mikami M, Arima T, Ogata T, Fukami M, Kagami M. Assisted reproductive technology represents a possible risk factor for development of epimutation-mediated imprinting disorders for mothers aged ≥ 30 years. Clin Epigenetics 2020; 12:111. [PMID: 32698867 PMCID: PMC7374921 DOI: 10.1186/s13148-020-00900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Backgrounds The proportion of assisted reproductive technology (ART)-conceived livebirths of patients with imprinting disorders (IDs) is higher than that of the general population. Whether this is due to ART or confounding effects of advanced parental age was not investigated. We examined the association of ART and parental ages at childbirth for the development of eight epimutation-mediated imprinting disorders (epi-IDs). Results We enrolled 136 patients with epi-IDs and obtained general population ART data from the Japanese robust nationwide registry. We compared the proportion of ART-conceived livebirths and maternal childbearing ages between patients with epi-IDs and the general population. The proportion of ART-conceived livebirths in patients with epi-IDs was higher than that in mothers aged ≥ 30 years, the age group in which more than 90% of ART procedures performed. The maternal childbearing ages of patients with epi-IDs were widely distributed from 19 to 45 (median: 32) within the approximate 2.5th to 97.5th percentiles of maternal childbearing ages of the general population. In addition, we compared the proportion of ART-conceived livebirths and parental ages at childbirth across patients with eight epi-IDs. We demonstrated that more than 90% of ART-conceived patients with epi-IDs were found in Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) patients, and parental ages were almost consistent in patients with eight epi-IDs, except Prader-Willi syndrome. Conclusions According to the prerequisite that most of the ART procedures in Japan are performed on mothers aged ≥ 30 years, ART can be a risk factor for the development of epi-IDs, particularly SRS and BWS, for mothers aged ≥ 30 years.
Collapse
Affiliation(s)
- Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masashi Mikami
- Division of Biostatistics, Clinical Research Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
6
|
Wang Y, Liu Q, Tang F, Yan L, Qiao J. Epigenetic Regulation and Risk Factors During the Development of Human Gametes and Early Embryos. Annu Rev Genomics Hum Genet 2019; 20:21-40. [DOI: 10.1146/annurev-genom-083118-015143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drastic epigenetic reprogramming occurs during human gametogenesis and early embryo development. Advances in low-input and single-cell epigenetic techniques have provided powerful tools to dissect the genome-wide dynamics of different epigenetic molecular layers in these processes. In this review, we focus mainly on the most recent progress in understanding the dynamics of DNA methylation, chromatin accessibility, and histone modifications in human gametogenesis and early embryo development. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, infertility, and long-term health issues in offspring. Aspects of the external environment, including assisted reproductive technology procedures, parental diets, and unhealthy parental habits, may disturb the epigenetic reprogramming processes and lead to an aberrant epigenome in the offspring. Here, we review the current knowledge of the potential risk factors of aberrant epigenomes in humans.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|