1
|
Garcia TX, Matzuk MM. Novel Genes of the Male Reproductive System: Potential Roles in Male Reproduction and as Non-hormonal Male Contraceptive Targets. Mol Reprod Dev 2024; 91:e70000. [PMID: 39422082 DOI: 10.1002/mrd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The development of novel non-hormonal male contraceptives represents a pivotal frontier in reproductive health, driven by the need for safe, effective, and reversible contraceptive methods. This comprehensive review explores the genetic underpinnings of male fertility, emphasizing the crucial roles of specific genes and structural variants (SVs) identified through advanced sequencing technologies such as long-read sequencing (LRS). LRS has revolutionized the detection of structural variants and complex genomic regions, offering unprecedented precision and resolution over traditional next-generation sequencing (NGS). Key genetic targets, including those implicated in spermatogenesis and sperm motility, are highlighted, showcasing their potential as non-hormonal contraceptive targets. The review delves into the systematic identification and validation of male reproductive tract-specific genes, utilizing advanced transcriptomics and genomics studies with validation using novel knockout mouse models. We discuss the innovative application of small molecule inhibitors, developed through platforms like DNA-encoded chemistry technology (DEC-Tec), which have shown significant promise in preclinical models. Notable examples include inhibitors targeting serine/threonine kinase 33 (STK33), soluble adenylyl cyclase (sAC), cyclin-dependent kinase 2 (CDK2), and bromodomain testis associated (BRDT), each demonstrating nanomolar affinity and potential for reversible and specific inhibition of male fertility. This review also honors the contributions of Dr. David L. Garbers whose foundational work has paved the way for these advancements. The integration of genomic, proteomic, and chemical biology approaches, supported by interdisciplinary collaboration, is poised to transform male contraceptive development. Future perspectives emphasize the need for continued innovation and rigorous testing to bring these novel contraceptives from the laboratory to clinical application, promising a new era of male reproductive health management.
Collapse
Affiliation(s)
- Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Okutman Ö, Gürbüz AS, Salvarci A, Büyük U, Ruso H, Gürgan T, Tarabeux J, Leuvrey AS, Nourisson E, Lang C, Muller J, Viville S. Evaluation of an Updated Gene Panel as a Diagnostic Tool for Both Male and Female Infertility. Reprod Sci 2024; 31:2309-2317. [PMID: 38664359 DOI: 10.1007/s43032-024-01553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
In recent years, an increasing number of genes associated with male and female infertility have been identified. The genetics of infertility is no longer limited to the analysis of karyotypes or specific genes, and it is now possible to analyse several dozen infertility genes simultaneously. Here, we present the diagnostic activity over the past two years including 140 patients (63 women and 77 men). Targeted sequencing revealed causative variants in 17 patients, representing an overall diagnostic rate of 12.1%, with prevalence rates in females and males of 11% and 13%, respectively. The gene-disease relationship (GDR) was re-evaluated for genes due to the addition of new patients and/or variants in the actual study. Five genes changed categories: two female genes (MEIOB and TBPL2) moved from limited to moderate; two male genes (SOHLH1 and GALNTL5) moved from no evidence to strong and from limited to moderate; and SEPTIN12, which was unable to classify male infertility, was reclassified as limited. Many infertility genes have yet to be identified. With the increasing integration of genetics in reproductive medicine, the scope of intervention extends to include other family members, in addition to individual patients or couples. Genetic counselling consultations and appropriate staffing will need to be established in fertility centres. Trial registration number: Not applicable.
Collapse
Affiliation(s)
- Özlem Okutman
- Service de Gynécologie-Obstetrique, Clinique de Fertilité, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Erasme, Route de Lennik, 808, 1070, Brussels, Belgium.
| | | | | | - Umut Büyük
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Halil Ruso
- Gürgan Clinic Women's Health and IVF Centre, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - Timur Gürgan
- Gürgan Clinic Women's Health and IVF Centre, Ankara, Turkey
- Department of Obstetrics and Gynecology, Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - Julien Tarabeux
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cécile Lang
- Laboratoire de Diagnostic Génétique, Unité de Génétique de L'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, INSERM UMR 1112, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée Au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Stephane Viville
- Laboratoire de Diagnostic Génétique, Unité de Génétique de L'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, INSERM UMR 1112, Strasbourg, France
| |
Collapse
|
3
|
Go M, Shim SH. Genomic aspects in reproductive medicine. Clin Exp Reprod Med 2024; 51:91-101. [PMID: 38263590 PMCID: PMC11140259 DOI: 10.5653/cerm.2023.06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 01/25/2024] Open
Abstract
Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as susceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation genetic testing in light of advances in genome analysis technology.
Collapse
Affiliation(s)
- Minyeon Go
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
4
|
Doulgeraki T, Papageorgopoulou M, Iliodromiti S. The genetic background of female reproductive disorders: a systematic review. Curr Opin Obstet Gynecol 2023; 35:426-433. [PMID: 37266690 DOI: 10.1097/gco.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Reproductive function is the interplay between environmental factors and the genetic footprint of each individual. The development in genetic analysis has strengthened its role in the investigation of female reproductive disorders, potential treatment options and provision of personalized care. Despite the increasing requirement of genetic testing, the evidence of the gene-disease relationships (GDR) is limited. We performed a systematic review exploring the associations between the most frequent female reproductive endocrine disorders associated with subfertility [including polycystic ovaries syndrome (PCOS), premature ovarian failure (POI) and hypogonadotropic hypogonadism] and their genetic background in order to summarize current knowledge. METHODS A systematic review of relevant literature in accordance with PRISMA guidelines was conducted until July 2022. Data sources that were used are PubMed and Embase. RECENT FINDINGS A total of 55 studies were included from the 614 articles identified in the original search. We identified 384 genes associated with one or more of the included female reproductive disorders. The highest number of genes was found to be associated with POI ( N = 209), followed by hypogonadotropic hypogonadism ( N = 88) and PCOS ( N = 87). Four genes, including FSHR , LHβ , LEPR and SF1 were associated with multiple reproductive disorders implying common pathways in the development of those diseases. SUMMARY We provide an up-to-date summary of the currently known genes that are associated with three female reproductive disorders (PCOS, POI and hypogonadotropic hypogonadism). The role of genetic analysis in the field of impaired female reproduction may have a role in the diagnosis of female reproductive disorders and personalized patient care.
Collapse
Affiliation(s)
- Triada Doulgeraki
- Department of Obstetrics and Gynaecology, Royal London Hospital, Barts Health NHS Trust
| | - Maria Papageorgopoulou
- Women's Health Research Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Stamatina Iliodromiti
- Women's Health Research Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
5
|
Nozawa K, Garcia TX, Kent K, Leng M, Jain A, Malovannaya A, Yuan F, Yu Z, Ikawa M, Matzuk MM. Testis-specific serine kinase 3 is required for sperm morphogenesis and male fertility. Andrology 2023; 11:826-839. [PMID: 36306217 PMCID: PMC10267670 DOI: 10.1111/andr.13314] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The importance of phosphorylation in sperm during spermatogenesis has not been pursued extensively. Testis-specific serine kinase 3 (Tssk3) is a conserved gene, but TSSK3 kinase functions and phosphorylation substrates of TSSK3 are not known. OBJECTIVE The goals of our studies were to understand the mechanism of action of TSSK3. MATERIALS AND METHODS We analyzed the localization of TSSK3 in sperm, used CRISPR/Cas9 to generate Tssk3 knockout (KO) mice in which nearly all of the Tssk3 open reading frame was deleted (ensuring it is a null mutation), analyzed the fertility of Tssk3 KO mice by breeding mice for 4 months, and conducted phosphoproteomics analysis of male testicular germ cells. RESULTS TSSK3 is expressed in elongating sperm and localizes to the sperm tail. To define the essential roles of TSSK3 in vivo, heterozygous (HET) or homozygous KO male mice were mated with wild-type females, and fertility was assessed over 4 months; Tssk3 KO males are sterile, whereas HET males produced normal litter sizes. The absence of TSSK3 results in disorganization of all stages of testicular seminiferous epithelium and significantly increased vacuolization of germ cells, leading to dramatically reduced sperm counts and abnormal sperm morphology; despite these histologic changes, Tssk3 null mice have normal testis size. To elucidate the mechanisms causing the KO phenotype, we conducted phosphoproteomics using purified germ cells from Tssk3 HET and KO testes. We found that proteins implicated in male infertility, such as GAPDHS, ACTL7A, ACTL9, and REEP6, showed significantly reduced phosphorylation in KO testes compared to HET testes, despite unaltered total protein levels. CONCLUSIONS We demonstrated that TSSK3 is essential for male fertility and crucial for phosphorylation of multiple infertility-related proteins. These studies and the pathways in which TSSK3 functions have implications for human male infertility and nonhormonal contraception.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Katarzyna Kent
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Mei Leng
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Fei Yuan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Zhao Q, Li Y, Liang Q, Zhao J, Kang K, Hou M, Zhang X, Du R, Kong L, Liang B, Huang W. The infertile individual analysis based on whole-exome sequencing in chinese multi-ethnic groups. Genes Genomics 2023; 45:531-542. [PMID: 36115009 DOI: 10.1007/s13258-022-01307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Infertility is a common and rapidly growing health issue around the world. The genetic analysis based on the infertile population is crucial for intervention and treatment. OBJECTIVE To find candidate gene locus led to azoospermia in Chinese multi-ethnic groups and provide theoretical guidance for the diagnosis of genetic diseases to progressively aggravated infertility patients and sterile offspring with ART. METHODS The study based on whole-exome sequencing (WES) was presented for genetic characteristic analysis of multi-ethnics and identification of variants related to infertility in Xinjiang area of China. RESULTS The frequency of pathogenic variants showed significant ethnic differences among four main ethnics in Xinjiang. The population structure analysis confirmed that the Hui was close to the Han population, the Kazak was close to the Uygur population, and there are three ancestry components in the four ethnics. In addition, ten candidate variants potentially regulated azoospermia were detected, and KNTC1 (rs7968222: G > T) was chosen to validate the association. Through the analysis in the valid group, the frequency of rs7968222 (G > T) has a significant difference in the azoospermia population (11.76%, 8/68) and normospermia population (4.63%, 35/756) (P < 0.001). Interestingly, the proportion of people with abnormal follicle-stimulating hormone (FSH) level in the group carrying rs7968222 (G > T) was significantly higher than non-carriers (P < 0.05). Therefore, rs7968222 may regulate spermatogenesis through affecting hormone level. CONCLUSION Our study establishes the genetics analysis of Northwest China and finds a candidate gene locus KNTC1 (rs7968222: G > T), which is one of the genetic susceptibility factors for male azoospermia.
Collapse
Affiliation(s)
- Qiongzhen Zhao
- Tanzhi Stem Cell Bank of Xinjiang, 844000, Tumshuk, Xinjiang, China
| | - Yanqi Li
- Tanzhi Stem Cell Bank of Xinjiang, 844000, Tumshuk, Xinjiang, China
| | - Qi Liang
- Xinjiang Jiayin hospital, 830000, Urumqi, Xinjiang, China
| | - Jie Zhao
- Xinjiang Jiayin hospital, 830000, Urumqi, Xinjiang, China
| | - Kai Kang
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Meiling Hou
- Suzhou BioX Research Institute, 215001, Suzhou, Jiangsu, China
| | - Xin Zhang
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Renqian Du
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200020, Shanghai, China.
| | - Weidong Huang
- Tanzhi Stem Cell Bank of Xinjiang, 844000, Tumshuk, Xinjiang, China.
- Xinjiang Jiayin hospital, 830000, Urumqi, Xinjiang, China.
| |
Collapse
|
7
|
Van Der Kelen A, Okutman Ö, Javey E, Serdarogullari M, Janssens C, Ghosh MS, Dequeker BJH, Perold F, Kastner C, Kieffer E, Segers I, Gheldof A, Hes FJ, Sermon K, Verpoest W, Viville S. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. Hum Reprod Update 2023; 29:218-232. [PMID: 36571510 DOI: 10.1093/humupd/dmac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As in other domains of medicine, high-throughput sequencing methods have led to the identification of an ever-increasing number of gene variants in the fields of both male and female infertility. The increasing number of recently identified genes allows an accurate diagnosis for previously idiopathic cases of female infertility and more appropriate patient care. However, robust evidence of the gene-disease relationships (GDR) allowing the proper translation to clinical application is still missing in many cases. OBJECTIVE AND RATIONALE An evidence-based curation of currently identified genes involved in female infertility and differences in sex development (DSD) would significantly improve both diagnostic performance and genetic research. We therefore performed a systematic review to summarize current knowledge and assess the available GDR. SEARCH METHODS PRISMA guidelines were applied to curate all available information from PubMed and Web of Science on genetics of human female infertility and DSD leading to infertility, from 1 January 1988 to 1 November 2021. The reviewed pathologies include non-syndromic as well as syndromic female infertility, and endocrine and reproductive system disorders. The evidence that an identified phenotype is caused by pathogenic variants in a specific gene was assessed according to a standardized scoring system. A final score (no evidence, limited, moderate, strong, or definitive) was assigned to every GDR. OUTCOMES A total of 45 271 publications were identified and screened for inclusion of which 1078 were selected for gene and variant extraction. We have identified 395 genes and validated 466 GDRs covering all reported monogenic causes of female infertility and DSD. Furthermore, we present a genetic diagnostic flowchart including 105 genes with at least moderate evidence for female infertility and suggest recommendations for future research. The study did not take into account associated genetic risk factor(s) or oligogenic/polygenic causes of female infertility. WIDER IMPLICATIONS We have comprehensively reviewed the existing research on the genetics of female infertility and DSD, which will enable the development of diagnostic panels using validated genes. Whole genome analysis is shifting from predominantly research to clinical application, increasing its diagnostic potential. These new diagnostic possibilities will not only decrease the number of idiopathic cases but will also render genetic counselling more effective for infertile patients and their families.
Collapse
Affiliation(s)
- Annelore Van Der Kelen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Özlem Okutman
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elodie Javey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Münevver Serdarogullari
- Department of Histology and Embryology, Faculty of Medicine, Cyprus International University, Northern Cyprus via Mersin 10, Turkey
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart J H Dequeker
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Florence Perold
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Claire Kastner
- Institut de Génétique Médicale d'Alsace IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Emmanuelle Kieffer
- Service de Génétique Médicale, Laboratoires de Diagnostic Génétique, Unité de Diagnostic Préimplantatoire (UF9327), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ingrid Segers
- Clinical Sciences, Research Group Reproduction and Genetics, Brussels IVF Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research Group Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alexander Gheldof
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik J Hes
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Willem Verpoest
- Clinical Sciences, Research Group Reproduction and Genetics, Brussels IVF Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Crafa A, Condorelli RA, La Vignera S, Calogero AE, Cannarella R. Globozoospermia: A Case Report and Systematic Review of Literature. World J Mens Health 2023; 41:49-80. [PMID: 36047070 PMCID: PMC9826911 DOI: 10.5534/wjmh.220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Globozoospermia is a genetic syndrome characterized by the presence of round-headed spermatozoa and infertility due to the inability of these spermatozoa to fertilize the oocyte. In this article, we present the clinical case of a young globozoospermic patient with a new, not yet described mutation of the DPY19L2 gene. We also performed a systematic review of the literature on gene mutations, the outcome of assisted reproductive techniques, and the risk of transmission of abnormalities to the offspring in patients with globozoospermia and made recommendations to offer a more appropriate clinical management of these patients. MATERIALS AND METHODS We performed a systematic search in the PubMed, Google Scholar, and Scopus databases from their inception to December 2021. The search strategy included the combination of the following Medical Subjects Headings (MeSH) terms and keywords: "globozoospermia", "round-headed spermatozoa", "round head spermatozoa", "intracytoplasmic sperm injection", "ICSI", "offspring", "child health", "assisted reproductive technique outcome". All the eligible studies were selected following the PECOS (Population, Exposure, Comparison/Comparator, Outcomes, Study design) model. The quality of included studies was assessed by applying the "Cambridge Quality Checklists". RESULTS The main genes involved in the pathogenesis of globozoospermia are DPY19L2, SPATA16, PICK1, GGN, SPACA1, ZPBP, CCDC62, and CCNB3 genes. Other genes could also play a role. These include C2CD6, C7orf61, CCIN, DNH17, DNH6, PIWIL4, and CHPT1. Globozoospermic patients should undergo ART to achieve fertility. In particular, intracytoplasmic sperm injection with assisted oocyte activation or intracytoplasmic morphologically-selected sperm injection appears to be associated with a higher success rate. Patients with globozoospermia should also be evaluated for the high rate of sperm aneuploidy which appears to influence the success rate of ART but does not appear to be associated with an increased risk of transmission of genetic abnormalities to offspring. CONCLUSIONS This systematic review summarizes the evidence on the gene panel to be evaluated, ICSI outcomes, and the health of the offspring in patients with globozoospermia. Evidence-based recommendations on the management of patients with globozoospermia are provided.
Collapse
Affiliation(s)
- Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Rocca MS, Minervini G, Vinanzi C, Bottacin A, Lia F, Foresta C, Pennuto M, Ferlin A. Mutational screening of androgen receptor gene in 8224 men of infertile couples. J Clin Endocrinol Metab 2022; 108:1181-1191. [PMID: 36394509 DOI: 10.1210/clinem/dgac671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in Androgen receptor (AR) gene might be associated with infertility mainly because they cause various degree of androgen insensitivity. OBJECTIVE The aim of the study was to evaluate the frequency and type of AR variants in a large cohort of infertile males. PATIENTS AND SETTING 8224 males of Italian idiopathic infertile couples referred University Hospital of Padova. MAIN OUTCOME MEASURES Mutational screening of AR, computational and functional analyses. RESULTS We found 131 patients (1.6%) harboring 45 variants in AR gene, of which 18 were novel missense AR variants. Patients with AR gene variants had lower sperm count (p = 0.048), higher testosterone concentration (p < 0.0001) and higher androgen sensitivity index (ASI) [LH x testosterone (T), p < 0.001] compared to patients without variants. Statistical analyses found T ≥ 15.38 nmol/l and ASI ≥180 IU × nmol/l2 as threshold values to discriminate with good accuracy patients with AR variants. Patients with oligozoospermia and T ≥ 15.38 nmol/l have a 9-fold increased risk of harboring mutations compared to patients with normal sperm count and T < 15.38 nmol/l (OR 9.29, 95% CI 5.07-17.02). Using computational and functional approaches, we identified two novel variants, L595P and L791I, as potentially pathogenic. CONCLUSION This is the largest study screening AR gene variants in men of idiopathic infertile couples. We found that the prevalence of variants increased to 3.4% in oligozoospermic subjects with T ≥ 15.38 nmol/l. Conversely, more than 80% of men with AR gene variants had low sperm count and high T levels. Based on our findings, we suggest AR sequencing as a routine genetic test in cases of idiopathic oligozoospermia with T ≥ 15.38 nmol/L.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | | | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Alberto Bottacin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Ma M, Guo L, Liu X, Zheng Y, Gu C, Li B. Genetic correlation between female infertility and mental health and lifestyle factors: A linkage disequilibrium score regression study. Health Sci Rep 2022; 5:e797. [PMID: 36090619 PMCID: PMC9436294 DOI: 10.1002/hsr2.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Aims Female fertility is a heterogeneous condition of complete psychosocial and physical well-being. Observational studies have revealed that women with infertility have varying degrees of poor mental status and lifestyle choices in varying degrees. However, the genetic contribution to female infertility remains elusive. Our study aimed to explore the genetic correlations between female infertility and mental health and lifestyle factors. Methods The genome-wide association study (GWAS) data sets of characteristics related to mental health and lifestyle were obtained from the IEU OpenGWAS database. The GWAS data sets of female infertility were derived from the Finggen database. Linkage disequilibrium score regression was performed to systematically estimate the pairwise genetic correlations between female infertility and a set of mental health- and lifestyle-related traits. Results The genetic correlation analysis revealed a moderate and positive genetic correlation between depressive symptoms, major depressive disorder, and female infertility. Similarly, worry and the personality trait of neuroticism displayed a moderate positive genetic correlation with female infertility. Adversely, a negative and moderate genetic correlation was observed between strenuous sports or exercises and female infertility. Conclusion The study demonstrated genetic correlations between female infertility and mental health status, including depression, worry, and neuroticism. Additionally, we observed that females with better physical activity may have reduced risks of female infertility. These findings would serve as a fundamental resource for understanding the genetic mechanisms of the effects of mental health and lifestyle factors on female infertility.
Collapse
Affiliation(s)
- Miao Ma
- Department of Gynecology and ObstetricsObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Lu Guo
- Department of Gynecology and ObstetricsObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xiaocheng Liu
- Department of Gynecology and ObstetricsObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Yingxin Zheng
- Department of Gynecology and ObstetricsObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Chao Gu
- Department of Gynecology and ObstetricsObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Bin Li
- Department of Gynecology and ObstetricsObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
11
|
Kohil A, Chouliaras S, Alabduljabbar S, Lakshmanan AP, Ahmed SH, Awwad J, Terranegra A. Female infertility and diet, is there a role for a personalized nutritional approach in assisted reproductive technologies? A Narrative Review. Front Nutr 2022; 9:927972. [PMID: 35938101 PMCID: PMC9353397 DOI: 10.3389/fnut.2022.927972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Female infertility is a major public health concern and a global challenge. It is a disorder of the reproductive system, defined as the inability to achieve a clinical pregnancy. Nutrition and other environmental factors are found to impact reproductive health in women as well as the outcome of assisted reproductive technologies (ART). Dietary factors, such as polyunsaturated fatty acids (PUFA), fiber as well as the intake of Mediterranean diet appear to exert beneficial effects on female reproductive outcomes. The exact mechanisms associating diet to female fertility are yet to be identified, although genomic, epigenomic, and microbial pathways may be implicated. This review aims to summarize the current knowledge on the impact of dietary components on female reproduction and ART outcomes, and to discuss the relevant interplay of diet with genome, epigenome and microbial composition.
Collapse
Affiliation(s)
- Amira Kohil
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Annalisa Terranegra
| |
Collapse
|
12
|
Silver A, Lazarin GA, Silver M, Miller M, Jansen M, Wechsberg C, Dekanek E, Grossfeld S, Herpel T, Gunatilake D, Bisignano A, Jaremko M. Technical Performance of a 430-Gene Preventative Genomics Assay to Identify Multiple Variant Types Associated with Adult-Onset Monogenic Conditions, Susceptibility Loci, and Pharmacogenetic Insights. J Pers Med 2022; 12:667. [PMID: 35629091 PMCID: PMC9147210 DOI: 10.3390/jpm12050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
DNA-based screening in individuals without known risk factors potentially identifies those who may benefit from genetic counseling, early medical interventions, and/or avoidance of late or missed diagnoses. While not currently in widespread usage, technological advances in genetic analysis overcome barriers to access by enabling less labor-intensive and more cost-efficient means to discover variants of clinical importance. This study describes the technical validation of a 430-gene next-generation sequencing based assay, GeneCompassTM, indicated for the screening of healthy individuals in the areas of actionable health risks, pharmaceutical drug response, and wellness traits. The test includes genes associated with Mendelian disorders and genetic susceptibility loci, encompassing 14 clinical areas and pharmacogenetic variants. The custom-designed target enrichment capture and bioinformatics pipelines interrogate multiple variant types, including single nucleotide variants, insertions/deletions (indels), copy number variants, and functional haplotypes (star alleles), including tandem alleles and structural variants. Validation was performed against reference DNA from three sources: 1000 Genomes Project (n = 3), Coriell biobank (n = 105), and previously molecularly characterized biological specimens: blood (n = 15) and saliva (n = 11). Analytical sensitivity and specificity for single nucleotide variants (SNVs) were 97.57% and 99.99%, respectively, and for indels were 74.57% and 97.34%, respectively. This study demonstrates the validity of an NGS assay for genetic screening and the broadening of access to preventative genomics.
Collapse
Affiliation(s)
- Ari Silver
- Phosphorus, Inc., 1140 Broadway, 12th Floor, New York, NY 10001, USA; (G.A.L.); (M.S.); (M.M.); (M.J.); (C.W.); (E.D.); (S.G.); (T.H.); (D.G.); (A.B.); (M.J.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu Y, Wang G, Zhang F, Dai L. An NGS-based approach to identify Y-chromosome variation in non-obstructive azoospermia. Andrologia 2021; 53:e14201. [PMID: 34350635 DOI: 10.1111/and.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Copy number variations (CNVs), including deletions and duplications on the Y chromosome, are known genetic factors in azoospermia. Therefore, it is important to identify novel pathogenic CNVs related to azoospermia. In this study, we compared CNVs detected by STS-PCR and NGS in 107 individuals with nonobstructive azoospermia (NOA). STS-PCR analysis revealed that 8.14% (9/107) of patients had AZF deletions. The highest percentage of deletions was located in the AZFc region, followed by AZFa and AZFb+c. Positive CNVs, including four duplications, six deletions and three complex CNVs, were detected using NGS methods in 12.15% (13/107) of NOA patients. Both the duplications and deletions detected in q11.223 were confirmed to increase the genetic risk for NOA. A comparison between the STS-PCR results and NGS methods revealed concordant CNV-positive results in 4 of 107 cases (3.74%). The discrepancies included 6 cases with CNVs identified by NGS but not detected by STS-PCR, and two cases were detected by STS-PCR but not by NGS. Notably, four duplications were not identified and three complex CNVs were detected as simple deletions using STS-PCR analysis. The NGS method provides comprehensive results in detecting Y chromosome-linked CNVs, including deletions and duplications, which might broaden our understanding of NOA.
Collapse
Affiliation(s)
- Yongjie Liu
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Guoping Wang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Liang Dai
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| |
Collapse
|
14
|
Sun B, Yeh J. Onco-fertility and personalized testing for potential for loss of ovarian reserve in patients undergoing chemotherapy: proposed next steps for development of genetic testing to predict changes in ovarian reserve. FERTILITY RESEARCH AND PRACTICE 2021; 7:13. [PMID: 34193292 PMCID: PMC8244159 DOI: 10.1186/s40738-021-00105-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Women of reproductive age undergoing chemotherapy face the risk of irreversible ovarian insufficiency. Current methods of ovarian reserve testing do not accurately predict future reproductive potential for patients undergoing chemotherapy. Genetic markers that more accurately predict the reproductive potential of each patient undergoing chemotherapy would be critical tools that would be useful for evidence-based fertility preservation counselling. To assess the possible approaches to take to develop personalized genetic testing for these patients, we review current literature regarding mechanisms of ovarian damage due to chemotherapy and genetic variants associated with both the damage mechanisms and primary ovarian insufficiency. The medical literature point to a number of genetic variants associated with mechanisms of ovarian damage and primary ovarian insufficiency. Those variants that appear at a higher frequency, with known pathways, may be considered as potential genetic markers for predictive ovarian reserve testing. We propose developing personalized testing of the potential for loss of ovarian function for patients with cancer, prior to chemotherapy treatment. There are advantages of using genetic markers complementary to the current ovarian reserve markers of AMH, antral follicle count and day 3 FSH as predictors of preservation of fertility after chemotherapy. Genetic markers will help identify upstream pathways leading to high risk of ovarian failure not detected by present clinical markers. Their predictive value is mechanism-based and will encourage research towards understanding the multiple pathways contributing to ovarian failure after chemotherapy.
Collapse
Affiliation(s)
- Bei Sun
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - John Yeh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of Massachusetts Medical School, UMass Memorial Medical Center, 119 Belmont Street, Worcester, MA, 01605, USA.
| |
Collapse
|
15
|
Precone V, Notarangelo A, Marceddu G, D'Agruma L, Cannarella R, Calogero AE, Cristofoli F, Guerri G, Paolacci S, Castori M, Bertelli M. A simultaneous next-generation sequencing approach to the diagnosis of couple infertility. Minerva Endocrinol (Torino) 2021; 47:4-10. [PMID: 33988008 DOI: 10.23736/s2724-6507.21.03477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Infertility is a disorder of the male and/or female reproductive system, characterized by failure to establish a clinical pregnancy after 12 months of regular unprotected sexual intercourse. On a world basis, about one in six couplesare affected by infertility during their reproductive lifespan. Despite a comprehensive diagnostic work-up, infertility in about 50% of couples remains idiopathic. In this context, a next-generation sequencing (NGS) approach has been suggested to increase diagnostic yield. Accordingly, this study aimed to evaluate the effectiveness of a custom-made NGS gene panel for the simultaneous genetic diagnosis of both partners of a large population of infertile couples. METHODS We developed a custom-made NGS panel for 229 genes associated with male and female infertility. The panel targeted exons and their flanking regions and was used to screen 99 couples with idiopathic infertility. RESULTS NGS sequencing revealed five pathogenic variants in six couples and 17 likely pathogenic variants or variants with uncertain significance (VUS). The pathogenic variants were identified in the following genes: GNRHR, CCDC39, DNAH5, and CCDC103; likely pathogenic variants were identified in TAC3, PROKR2, and CFTR; VUS were identified in CATSPER2, FGFR1, LRRC6, DNAH5, DNAH11, TGFBR3, and DNAI1. CONCLUSIONS The panel of genes designed for this study allowed the identification of pathogenetic gene mutations and the presence of VUS in 6.1% and 17.2%, respectively, of couples with idiopathic infertility. This is the first study to successfully apply an NGS-based genetic screening including 229 genes known to play a role in both male and female infertility.
Collapse
Affiliation(s)
| | - Angelantonio Notarangelo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | - Leonardo D'Agruma
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Matteo Bertelli
- MAGI Euregio, Bolzano, Italy.,MAGI'S LAB, Rovereto, Trento, Italy
| |
Collapse
|
16
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
17
|
Witherspoon L, Dergham A, Flannigan R. Y-microdeletions: a review of the genetic basis for this common cause of male infertility. Transl Androl Urol 2021; 10:1383-1390. [PMID: 33850774 PMCID: PMC8039600 DOI: 10.21037/tau-19-599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human Y-chromosome contains genetic material responsible for normal testis development and spermatogenesis. The long arm (Yq) of the Y-chromosome has been found to be susceptible to self-recombination during spermatogenesis predisposing this area to deletions. The incidence of these deletions is estimated to be 1/4,000 in the general population but has been found to be much higher in infertile men. Currently, Y-microdeletions are the second most commonly identified genetic cause of male infertility after Klinefelter syndrome. This has led to testing for these deletions becoming standard practice in men with azoospermia and severe oligospermia. There are three commonly identified Y-microdeletions in infertile males, termed azoospermia factor (AZF) microdeletions AZFa, AZFb and AZFc. With increased understanding and investigation of this genetic basis for infertility a more comprehensive understanding of these deletions has evolved, with several other deletion subtypes being identified. Understanding the genetic basis and pathology behind these Y-microdeletions is essential for any clinician involved in reproductive medicine. In this review we discuss the genetic basis of Y-microdeletions, the various subtypes of deletions, and current technologies available for testing. Our understanding of this issue is evolving in many areas, and in this review we highlight future testing opportunities that may allow us to stratify men with Y-microdeletion associated infertility more accurately
Collapse
Affiliation(s)
- Luke Witherspoon
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Ali Dergham
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Pelzman DL, Hwang K. Genetic testing for men with infertility: techniques and indications. Transl Androl Urol 2021; 10:1354-1364. [PMID: 33850771 PMCID: PMC8039607 DOI: 10.21037/tau-19-725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic testing is an integral component in the workup of male infertility as genetic conditions may be responsible for up to 15% of all cases. Currently, three genetic tests are commonly performed and recommended by major urologic associations: karyotype analysis (KA), Y-chromosome microdeletion testing, and CFTR mutation testing. Despite widespread adoption of these tests, an etiology for infertility remains elusive in up to 80% of cases. Recent work has identified intriguing new targets for genetic testing which may soon see clinical relevance. This review will discuss the indications and techniques for currently offered genetic tests and briefly explore ongoing research directions within this field.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Pharmacogenomic Biomarkers of Follicle-Stimulating Hormone Receptor Malfunction in Females with Impaired Ovarian Response-A Genetic Survey. J Clin Med 2021; 10:jcm10020170. [PMID: 33561079 PMCID: PMC7825139 DOI: 10.3390/jcm10020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays an essential role as one of the most important molecules in response to some of infertility related medications. Impaired ovarian reserve and poor response to such treatments are partially dependent on the FSHR molecule itself. However, the function and drug sensitivity for this receptor may change due to various allele and polymorphisms in the FSHR gene. Studies indicated some of the FSHR-mediated treatments utilized in clinical centers display different outcomes in specific populations, which may arise from FSHR altered genotypes in certain patients. To support the increased demands for reaching the personalized drug and hormone therapy in clinics, focusing on actionable variants through Pharmacogenomic analysis of this receptor may be necessary. The current study tries to display a perspective view on genetic assessments for Pharmacogenomic profiling of the FSHR gene via providing a systematic and critical overview on the genetics of FSHR and its diverse responses to ligands for infertility treatment in females with impaired ovarian responses and show the potential effects of the patient genetic make-up on related binding substances efficacy. All identified functional drug-related alleles were selected through a comprehensive literature search and analyzed. Advanced technologies for the genetic evaluation of them are also discussed properly.
Collapse
|
20
|
One4Two ®: An Integrated Molecular Approach to Optimize Infertile Couples' Journey. Genes (Basel) 2021; 12:genes12010060. [PMID: 33401665 PMCID: PMC7824287 DOI: 10.3390/genes12010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The current diagnostic path of infertile couples is long lasting and often ineffective. Genetic tests, in particular, appear as a limiting step due to their jeopardized use on one side, and to the limited number of genes evaluated on the other. In this context, the development and diffusion, also in routine diagnostic settings, of next generation sequencing (NGS)-based methods for the analyses of several genes in multiple subjects at a time is improving the diagnostic sensitivity of molecular analyses. Thus, we developed One4Two®, a custom NGS panel to optimize the diagnostic journey of infertile couples. The panel validation was carried out in three steps analyzing a total of 83 subjects. Interestingly, all the previously identified variants were confirmed, assessing the analytic sensitivity of the method. Moreover, additional pathogenic variants have been identified underlying the diagnostic efficacy of the proposed method. One4Two® allows the simultaneous analysis of infertility-related genes, disease-genes of common inherited diseases, and of polymorphisms related to therapy outcome. Thus, One4Two® is able to improve the diagnostic journey of infertile couples by simplifying the whole process not only for patients, but also for laboratories and reproduction specialists moving toward an even more personalized medicine.
Collapse
|
21
|
Miller D, Vukina J. Recent advances in clinical diagnosis and treatment of male factor infertility. Postgrad Med 2020; 132:28-34. [PMID: 32990123 DOI: 10.1080/00325481.2020.1830589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infertility is a significant global health issue affecting around 8-12% of couples worldwide with male factor infertility accounting for a substantial proportion of these cases. Despite significant advances within the past few decades, an etiology for male factor infertility cannot be identified in up to 80% of patients and thus, this continues to be an area of active study. This review aims to provide an update on recent advances in the field of male infertility including semen analysis and at-home semen testing, genetics, DNA fragmentation, surgical approaches, and the rise of telemedicine in the era of COVID19.
Collapse
Affiliation(s)
- David Miller
- Department of Urology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania, USA
| | - Josip Vukina
- Department of Urology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Nasirshalal M, Tahmasebi-Birgani M, Dadfar M, Nikbakht R, Saberi A, Ghandil P. Identification of the PRM1 gene mutations in oligoasthenoteratozoospermic men. Andrologia 2020; 52:e13872. [PMID: 33118225 DOI: 10.1111/and.13872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/04/2023] Open
Abstract
Mutations or altered expression of PRM1 gene have been associated with male infertility. This study aimed to analyse pathogenic variations of PRM1 gene in Iranian Arab infertile men with oligoasthenoteratozoospermia that was carried out for the first time in this population. Genomic DNA was used to perform PCR sequencing in PRM1 untranslated regions, exons and intron. Also, bioinformatics analysis was recruited to discover the possible effect of detected variations. Two pathogenic variations were seen in two men with oligoasthenoteratozoospermia, which were not found in the control group. The cDNA.384G>C variation is novel and was located in the 3' untranslated region, and cDNA.42G>A variation is reported for the first time related to male infertility and was found in 5' untranslated regions. Bioinformatics analysis showed that the minimum free energy was increased from -19.9kcal/mol to -13.1kcal/mol due to the cDNA.384G>C variation at hsa-miR-4326's seed site. More analysis revealed cDNA.42G>A located in transcription factors binding site, E1 and MYOD, which was detected as a promoter-associated region, and generally have regulatory features for acetylation and methylation. In conclusion, two pathogenic variations were recognised in regulatory areas of PRM1 gene, which might interfere with some critical factors related to PRM1 gene expression, hence cause male infertility.
Collapse
Affiliation(s)
- Mahzad Nasirshalal
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
24
|
Kellogg G, Thorsson B, Cai Y, Wisotzkey R, Pollock A, Akana M, Fox R, Jansen M, Gudmundsson EF, Patel B, Chang C, Jaremko M, Puig O, Gudnason V, Emilsson V. Molecular screening of familial hypercholesterolemia in Icelanders. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:508-514. [DOI: 10.1080/00365513.2020.1795919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Ying Cai
- Phosphorus Diagnostics, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | - Oscar Puig
- Phosphorus Diagnostics, New York, NY, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
25
|
McIntyre KJ, Murphy E, Mertens L, Dubuc AM, Heim RA, Mason-Suares H. A Role for Chromosomal Microarray Testing in the Workup of Male Infertility. J Mol Diagn 2020; 22:1189-1198. [PMID: 32615168 DOI: 10.1016/j.jmoldx.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/28/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Genetic analysis is a critical component in the male infertility workup. For male infertility due to oligospermia/azoospermia, standard guidelines recommend karyotype and Y-chromosome microdeletion analyses. A karyotype is used to identify structural and numerical chromosome abnormalities, whereas Y-chromosome microdeletions are commonly evaluated by multiplex PCR analysis because of their submicroscopic size. Because these assays often require different Vacutainer tubes to be sent to different laboratories, ordering is prone to errors. In addition, this workflow limits the ability for sequential testing and a comprehensive test result. A potential solution includes performing Y-microdeletion and numerical chromosome analysis-the most common genetic causes of oligospermia/azoospermia-by chromosomal microarray (CMA) and reflexing to karyotype as both assays are often offered in the cytogenetics laboratory. Such analyses can be performed using one sodium heparin Vacutainer tube sample. To determine the effectiveness of CMA for the detection of clinically significant Y-chromosome microdeletions, 21 cases with known Y microdeletions were tested by CytoScan HD platform. CMA studies identified all known Y-chromosome microdeletions, and in 11 cases (52%) identified additional clinically important cytogenetic anomalies, including six cases of 46, XX males, one case of isodicentric Y, two cases of a dicentric Y, and three cases of terminal Yq deletions. These findings demonstrate that this testing strategy would simplify ordering and allow for an integrated interpretation of test results.
Collapse
Affiliation(s)
- Kelsey J McIntyre
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Elissa Murphy
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Lauren Mertens
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Adrian M Dubuc
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Ruth A Heim
- Division of Integrated Genetics, LabCorp, Westborough, Massachusetts
| | - Heather Mason-Suares
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts.
| |
Collapse
|
26
|
Abstract
A male factor is a contributor in 50% of cases of infertility. Although assisted reproductive techniques can often bypass the need to improve semen parameters, the evaluation of the infertile man remains critical. Current methods for evaluating the infertile man are discussed, beginning with the basic workup that all suspected infertile men should undergo, followed by subsequent evaluation steps. Although the fundamental components of the evaluation have remained consistent, several new tools are available to assist in identifying the underlying etiology. As our understanding of male fertility expands, the technologies available to diagnose and ultimately treat it continue to evolve.
Collapse
Affiliation(s)
- Ujval Ishu Pathak
- Scott Department of Urology, Baylor College of Medicine, 6624 Fannin Street, Suite 1700, Houston, TX 77030, USA
| | - Joseph Scott Gabrielsen
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 656, Rochester, NY 14642, USA
| | - Larry I Lipshultz
- Scott Department of Urology, Baylor College of Medicine, 6624 Fannin Street, Suite 1700, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Rocca MS, Msaki A, Ghezzi M, Cosci I, Pilichou K, Celeghin R, Foresta C, Ferlin A. Development of a novel next-generation sequencing panel for diagnosis of quantitative spermatogenic impairment. J Assist Reprod Genet 2020; 37:753-762. [PMID: 32242295 DOI: 10.1007/s10815-020-01747-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To develop and assess a novel custom next-generation sequencing (NGS) panel for male infertility genetic diagnosis. METHODS A total of 241 subjects with diagnosis of idiopathic infertility ranging from azoospermia to normozoospermia were sequenced by a custom NGS panel including AR, FSHB, FSHR, KLHL10, NR5A1, NANOS1, SEPT12, SYCP3, TEX11 genes. Variants with minor allele frequency < 1% were confirmed by Sanger sequencing. RESULTS Nineteen missense variants were detected in 23 subjects with abnormal sperm count, whilst no variants were identified in normozoospermic men. Of identified variants, we prioritized variants classified as pathogenic and of uncertain significance (VUS) (63.1%, 12/19). No missense variants were found in males with normal seminal parameters (0/67). Therefore, the prevalence of variants was significantly higher in patients with spermatogenic impairment (16/174 vs 0/67, p = 0.007). CONCLUSION This study confirms the utility to apply NGS panel for infertility diagnosis in order to find new genetic variants potentially linked to male infertility with much higher accuracy than standard tests suggested by guidelines. Indeed, based on biological significance, prevalence in the general population and clinical data of patients, it is plausible that identified variants in this study might be linked to quantitative spermatogenic impairment, although further studies are needed.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy
| | - Aichi Msaki
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy
| | - Marco Ghezzi
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy
| | - Ilaria Cosci
- Familial Cancer Clinic, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Rudy Celeghin
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy.
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Krzastek SC, Smith RP, Kovac JR. Future diagnostics in male infertility: genomics, epigenetics, metabolomics and proteomics. Transl Androl Urol 2020; 9:S195-S205. [PMID: 32257860 PMCID: PMC7108983 DOI: 10.21037/tau.2019.10.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
A male factor is involved in 50% of couples with infertility. Unfortunately, the etiology of male factor infertility remains classified as idiopathic in nearly 50% of cases. The semen analysis (SA) continues to be first line for the workup of male infertility, but it is an imperfect test with high variability between samples. This lack of diagnostic capability has led to the desire to develop minimally invasive tests to aid with understanding the etiology of male factor infertility. Genetic factors are known to play a role in male infertility, and much work has been done to identify the many genes involved. The study of the genes involved, the impact of epigenetic modifications, proteins and metabolites produced are attractive targets for development of biomarkers which may be used to diagnose the etiology of male infertility. This review aims to explore recent advances in these fields as they pertain to the diagnosis of male infertility.
Collapse
Affiliation(s)
- Sarah C. Krzastek
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
29
|
Precone V, Cannarella R, Paolacci S, Busetto GM, Beccari T, Stuppia L, Tonini G, Zulian A, Marceddu G, Calogero AE, Bertelli M. Male Infertility Diagnosis: Improvement of Genetic Analysis Performance by the Introduction of Pre-Diagnostic Genes in a Next-Generation Sequencing Custom-Made Panel. Front Endocrinol (Lausanne) 2020; 11:605237. [PMID: 33574797 PMCID: PMC7872015 DOI: 10.3389/fendo.2020.605237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Infertility affects about 7% of the general male population. The underlying cause of male infertility is undefined in about 50% of cases (idiopathic infertility). The number of genes involved in human spermatogenesis is over two thousand. Therefore, it is essential to analyze a large number of genes that may be involved in male infertility. This study aimed to test idiopathic male infertile patients negative for a validated panel of "diagnostic" genes, for a wide panel of genes that we have defined as "pre-diagnostic." METHODS We developed a next-generation sequencing (NGS) gene panel including 65 pre-diagnostic genes that were used in 12 patients who were negative to a diagnostic genetic test for male infertility disorders, including primary spermatogenic failure and central hypogonadism, consisting of 110 genes. RESULTS After NGS sequencing, variants in pre-diagnostic genes were identified in 10/12 patients who were negative to a diagnostic test for primary spermatogenic failure (n = 9) or central hypogonadism (n = 1) due to mutations of single genes. Two pathogenic variants of DNAH5 and CFTR genes and three uncertain significance variants of DNAI1, DNAH11, and CCDC40 genes were found. Moreover, three variants with high impact were found in AMELY, CATSPER 2, and ADCY10 genes. CONCLUSION This study suggests that searching for pre-diagnostic genes may be of relevance to find the cause of infertility in patients with apparently idiopathic primary spermatogenic failure due to mutations of single genes and central hypogonadism.
Collapse
Affiliation(s)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Gian Maria Busetto
- Department of Urology, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Gerolamo Tonini
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy
| | | | | | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- EBTNA-LAB, Rovereto, Italy
| |
Collapse
|
30
|
Schilit SLP. Recent advances and future opportunities to diagnose male infertility. CURRENT SEXUAL HEALTH REPORTS 2019; 11:331-341. [PMID: 31853232 PMCID: PMC6919557 DOI: 10.1007/s11930-019-00225-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Infertility affects 10-15% of couples, making it one of the most frequent health disorders for individuals of reproductive age. The state of childlessness and efforts to restore fertility cause substantial emotional, social, and financial stress on couples. Male factors contribute to about half of all infertility cases, and yet are understudied relative to female factors. The result is that the majority of men with infertility lack specific causal diagnoses, which serves as a missed opportunity to inform therapies for these couples. RECENT FINDINGS In this review, we describe current standards for diagnosing male infertility and the various interventions offered to men in response to differential diagnoses. We then discuss recent advances in the field of genetics to identify novel etiologies for formerly unexplained infertility. SUMMARY With a specific genetic diagnosis, male factors can be addressed with appropriate reproductive counseling and with potential access to assisted reproductive technologies to improve chances of a healthy pregnancy.
Collapse
Affiliation(s)
- Samantha L. P. Schilit
- Biological and Biomedical Sciences Program, Graduate School
of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Program in Genetics and Genomics, Department of Genetics,
Harvard Medical School, Boston, MA, USA
- Leder Human Biology and Translational Medicine Program,
Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Genetics Training Program, Harvard
Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Schuppe HC, Pilatz A, Fietz D, Diemer T, Köhn FM, Tüttelmann F, Kliesch S. Kinderwunsch bei Azoospermie. GYNAKOLOGISCHE ENDOKRINOLOGIE 2019. [DOI: 10.1007/s10304-019-00271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Thirumavalavan N, Gabrielsen JS, Lamb DJ. Where are we going with gene screening for male infertility? Fertil Steril 2019; 111:842-850. [PMID: 31029238 DOI: 10.1016/j.fertnstert.2019.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/11/2023]
Abstract
Male infertility is a heterogenous disease process requiring the proper functioning and interaction of thousands of genes. Given the number of genes involved, it is thought that genetic causes contribute to most cases of infertility. Identifying these causes, however, is challenging. Infertility is associated with negative health outcomes, such as cancer, highlighting the need to further understand the genetic underpinnings of this condition. This paper describes the genetic and genomic tests currently available to identify the etiology of male infertility and then will discuss emerging technologies that may facilitate diagnosis and treatment of in the future.
Collapse
Affiliation(s)
| | | | - Dolores J Lamb
- Department of Urology, Center for Reproductive Genomics and Caryle and Israel Englander, Institute for Precision Medicine, Weill Cornell School of Medicine, New York, New York.
| |
Collapse
|
33
|
Oud MS, Volozonoka L, Smits RM, Vissers LELM, Ramos L, Veltman JA. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod 2019; 34:932-941. [PMID: 30865283 PMCID: PMC6505449 DOI: 10.1093/humrep/dez022] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Which genes are confidently linked to human monogenic male infertility? SUMMARY ANSWER Our systematic literature search and clinical validity assessment reveals that a total of 78 genes are currently confidently linked to 92 human male infertility phenotypes. WHAT IS KNOWN ALREADY The discovery of novel male infertility genes is rapidly accelerating with the availability of next-generating sequencing methods, but the quality of evidence for gene-disease relationships varies greatly. In order to improve genetic research, diagnostics and counseling, there is a need for an evidence-based overview of the currently known genes. STUDY DESIGN, SIZE, DURATION We performed a systematic literature search and evidence assessment for all publications in Pubmed until December 2018 covering genetic causes of male infertility and/or defective male genitourinary development. PARTICIPANTS/MATERIALS, SETTING, METHODS Two independent reviewers conducted the literature search and included papers on the monogenic causes of human male infertility and excluded papers on genetic association or risk factors, karyotype anomalies and/or copy number variations affecting multiple genes. Next, the quality and the extent of all evidence supporting selected genes was weighed by a standardized scoring method and used to determine the clinical validity of each gene-disease relationship as expressed by the following six categories: no evidence, limited, moderate, strong, definitive or unable to classify. MAIN RESULTS AND THE ROLE OF CHANCE From a total of 23 526 records, we included 1337 publications about monogenic causes of male infertility leading to a list of 521 gene-disease relationships. The clinical validity of these gene-disease relationships varied widely and ranged from definitive (n = 38) to strong (n = 22), moderate (n = 32), limited (n = 93) or no evidence (n = 160). A total of 176 gene-disease relationships could not be classified because our scoring method was not suitable. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Our literature search was limited to Pubmed. WIDER IMPLICATIONS OF THE FINDINGS The comprehensive overview will aid researchers and clinicians in the field to establish gene lists for diagnostic screening using validated gene-disease criteria and help to identify gaps in our knowledge of male infertility. For future studies, the authors discuss the relevant and important international guidelines regarding research related to gene discovery and provide specific recommendations for the field of male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a VICI grant from The Netherlands Organization for Scientific Research (918-15-667 to J.A.V.), the Royal Society, and Wolfson Foundation (WM160091 to J.A.V.) as well as an investigator award in science from the Wellcome Trust (209451 to J.A.V.). PROSPERO REGISTRATION NUMBER None.
Collapse
Affiliation(s)
- Manon S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ludmila Volozonoka
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Roos M Smits
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Liliana Ramos
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|