1
|
Gualtieri R, De Gregorio V, Candela A, Travaglione A, Genovese V, Barbato V, Talevi R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024; 13:996. [PMID: 38920627 PMCID: PMC11202082 DOI: 10.3390/cells13120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples ‘’Federico II’’, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.D.G.); (A.C.); (A.T.); (V.G.); (V.B.); (R.T.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Sperling K, Scherb H, Neitzel H. Population monitoring of trisomy 21: problems and approaches. Mol Cytogenet 2023; 16:6. [PMID: 37183244 PMCID: PMC10183086 DOI: 10.1186/s13039-023-00637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
Trisomy 21 (Down syndrome) is the most common autosomal aneuploidy among newborns. About 90% result from meiotic nondisjunction during oogenesis, which occurs around conception, when also the most profound epigenetic modifications take place. Thus, maternal meiosis is an error prone process with an extreme sensitivity to endogenous factors, as exemplified by maternal age. This contrasts with the missing acceptance of causal exogenous factors. The proof of an environmental agent is a great challenge, both with respect to ascertainment bias, determination of time and dosage of exposure, as well as registration of the relevant individual health data affecting the birth prevalence. Based on a few exemplary epidemiological studies the feasibility of trisomy 21 monitoring is illustrated. In the nearer future the methodical premises will be clearly improved, both due to the establishment of electronic health registers and to the introduction of non-invasive prenatal tests. Down syndrome is a sentinel phenotype, presumably also with regard to other congenital anomalies. Thus, monitoring of trisomy 21 offers new chances for risk avoidance and preventive measures, but also for basic research concerning identification of relevant genomic variants involved in chromosomal nondisjunction.
Collapse
Affiliation(s)
- Karl Sperling
- Institute of Medical and Human Genetics, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Hagen Scherb
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Heidemarie Neitzel
- Institute of Medical and Human Genetics, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
5
|
Transmission ratio distortion of mutations in the master regulator of centriole biogenesis PLK4. Hum Genet 2022; 141:1785-1794. [PMID: 35536377 PMCID: PMC9556372 DOI: 10.1007/s00439-022-02461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
The evolutionary conserved Polo-like kinase 4 (PLK4) is essential for centriole duplication, spindle assembly, and de novo centriole formation. In man, homozygous mutations in PLK4 lead to primary microcephaly, altered PLK4 expression is associated with aneuploidy in human embryos. Here, we report on a consanguineous four-generation family with 8 affected individuals compound heterozygous for a novel missense variant, c.881 T > G, and a deletion of the PLK4 gene. The clinical phenotype of the adult patients is mild compared to individuals with previously described PLK4 mutations. One individual was homozygous for the variant c.881G and phenotypically unaffected. The deletion was inherited by 14 of 16 offspring and thus exhibits transmission ratio distortion (TRD). Moreover, based on the already published families with PLK4 mutations, it could be shown that due to the preferential transmission of the mutant alleles, the number of affected offspring is significantly increased. It is assumed that reduced expression of PLK4 decreases the intrinsically high error rate of the first cell divisions after fertilization, increases the number of viable embryos and thus leads to preferential transmission of the deleted/mutated alleles.
Collapse
|
7
|
Lubinsky M. The VACTERL association: mosaic mitotic aneuploidy as a cause and a model. J Assist Reprod Genet 2019; 36:1549-1554. [PMID: 31129863 PMCID: PMC6708033 DOI: 10.1007/s10815-019-01485-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
While mitotic errors commonly cause aneuploid clones soon after conception, the embryos often normalize as clones are rapidly eliminated. Although generally considered benign, evidence suggests clone elimination as the primary cause of the vertebral, ano-rectal, cardiac, tracheo-esophageal, renal, and limb (VACTERL) association of anomalies, and possibly other adverse outcomes as well. Here, clone elimination-related development disruption at specific locations is used as the basis of a comprehensive theoretical VACTERL association model that also elucidates mitotic mosaic aneuploidy effects. For the association, the model explains random temporal and spatial origins during a limited time frame and overlapping clusters of component anomalies. It supports early developmental effects involving the stage of determination, where the position in a specific morphogen field controls what a cell will become and where it will be located. Developmental properties related to determination also create specific vulnerabilities to the midline and distal defects, the latter explaining exclusively radial and tibial defects with duplications and deficiencies. The model also supports isolated anomalies as part of the association and, for mosaic mitotic aneuploidy, indicates that clone elimination nears completion at the time of lower limb determination. Although mosaic clone elimination may cause other defects, occurrences in different developmental fields separate them from VACTERL anomalies. Clone elimination may also be related to risks for a single umbilical artery and for non-structural adverse pregnancy outcomes such as losses, prematurity, and growth delays, while a paucity of clone lethality in non-humans explains the rarity of the association and of single umbilical arteries in animals.
Collapse
|
8
|
Zeng S, Wang X, Wang Y, Xu Z, Zhang J, Liu W, Qian L, Chen X, Wei J, Yang X, Gong Z, Yan Y. MTHFR C677T polymorphism is associated with follicle-stimulating hormone levels and controlled ovarian hyperstimulation response: a retrospective study from the clinical database. Fertil Steril 2019; 111:982-990.e2. [PMID: 30922641 DOI: 10.1016/j.fertnstert.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To evaluate the impact of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with clinical data analysis in controlled ovarian hyperstimulation (COH) of infertile women in the Intravenous Infusion Safety Evaluation Center of Hunan Province, People's Republic of China. DESIGN Genetic Association Study. SETTING Reproductive medicine clinical. PATIENT(S) This genetic association study included 722 infertile women who received the standard long treatment protocol with accessible and complete electronic medical records. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The clinical parameters were obtained from the Intravenous Infusion Safety Evaluation center. RESULT(S) Basal FSH levels in the TT group were significantly higher than those of the CC group. The FSH levels after down-regulation in the TT group were higher than those of CC/CT genotypes. The TT genotype patients received significantly higher total doses of GnRH agonist and FSH compared with CC/CT genotypes, whereas the total dose of hCG was higher in the CT genotypes compared with the CC/TT genotypes. Further association analysis between hormone levels and COH outcomes indicated significantly negative correlation of basal FSH levels with antral follicle count and number of oocytes as well as the down-regulation FSH levels with the number of metaphase II oocytes and oocytes. CONCLUSION(S) The MTHFR C677T polymorphism was associated with high doses of ovarian stimulation medications, as well as higher FSH levels. The negative correlation between FSH levels and the number of oocytes suggested that C677T polymorphism may play a role in the poor prognosis of COH oocytes. This needs to be studied in future prospective studies with longer follow-up.
Collapse
Affiliation(s)
- Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yonggang Wang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jingping Zhang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|