1
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024:10.1007/s10815-024-03259-7. [PMID: 39325344 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
2
|
Canosa S, Licheri N, Bergandi L, Gennarelli G, Paschero C, Beccuti M, Cimadomo D, Coticchio G, Rienzi L, Benedetto C, Cordero F, Revelli A. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development. J Ovarian Res 2024; 17:63. [PMID: 38491534 PMCID: PMC10941455 DOI: 10.1186/s13048-024-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) methods were developed in order to assist embryologists with automatized and objective predictive models able to standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify relevant patterns associated with the prediction of blastocyst development stage on day 5. METHODS We retrospectively analysed the morphokinetics of 575 embryos obtained from 80 women who underwent IVF at our Unit. Embryo morphokinetics was registered using the Geri plus® time-lapse system. Overall, 30 clinical, morphological and morphokinetic variables related to women and embryos were recorded and combined. Some embryos reached the expanded blastocyst stage on day 5 (BL Group, n = 210), some others did not (nBL Group, n = 365). RESULTS The novel EmbryoMLSelection framework was developed following four-steps: Feature Selection, Rules Extraction, Rules Selection and Rules Evaluation. Six rules composed by a combination of 8 variables were finally selected, and provided a predictive power described by an AUC of 0.84 and an accuracy of 81%. CONCLUSIONS We provided herein a new feature-signature able to identify with an high performance embryos with the best developmental competence to reach the expanded blastocyst stage on day 5. Clear and clinically relevant cut-offs were identified for each considered variable, providing an objective tool for early embryo developmental assessment.
Collapse
Affiliation(s)
- S Canosa
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy.
- IVIRMA Global Research Alliance, Livet, Turin, Italy.
| | - N Licheri
- Department of Computer Science, University di Turin, Turin, Italy
| | - L Bergandi
- Department of Oncology, University of Turin, Turin, Italy
| | - G Gennarelli
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
- IVIRMA Global Research Alliance, Livet, Turin, Italy
| | - C Paschero
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
| | - M Beccuti
- Department of Computer Science, University di Turin, Turin, Italy
| | - D Cimadomo
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy
| | - G Coticchio
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
| | - L Rienzi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - C Benedetto
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
| | - F Cordero
- Department of Computer Science, University di Turin, Turin, Italy
| | - A Revelli
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Mangione R, Pallisco R, Bilotta G, Marroni F, Di Pietro V, Capoccia E, Lazzarino G, Tavazzi B, Lazzarino G, Bilotta P, Amorini AM. Bilirubin Concentration in Follicular Fluid Is Increased in Infertile Females, Correlates with Decreased Antioxidant Levels and Increased Nitric Oxide Metabolites, and Negatively Affects Outcome Measures of In Vitro Fertilization. Int J Mol Sci 2023; 24:10707. [PMID: 37445884 DOI: 10.3390/ijms241310707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
In a previous study, we showed that various low-molecular-weight compounds in follicular fluid (FF) samples of control fertile females (CFF) have different concentrations compared to those found in FF of infertile females (IF), before and after their categorization into different subgroups, according to their clinical diagnosis of infertility. Using the same FF samples of this previous study, we here analyzed the FF concentrations of free and bound bilirubin and compared the results obtained in CFF, IF and the different subgroups of IF (endometriosis, EM, polycystic ovary syndrome, PCOS, age-related reduced ovarian reserve, AR-ROR, reduced ovarian reserve, ROR, genetic infertility, GI and unexplained infertility, UI). The results clearly indicated that CFF had lower values of free, bound and total bilirubin compared to the respective values measured in pooled IF. These differences were observed even when IF were categorized into EM, PCOS, AR-ROR, ROR, GI and UI, with EM and PCOS showing the highest values of free, bound and total bilirubin among the six subgroups. Using previous results of ascorbic acid, GSH and nitrite + nitrate measured in the same FF samples of the same FF donors, we found that total bilirubin in FF increased as a function of decreased values of ascorbic acid and GSH, and increased concentrations of nitrite + nitrate. The values of total bilirubin negatively correlated with the clinical parameters of fertilization procedures (number of retrieved oocytes, mature oocytes, fertilized oocytes, blastocysts, high-quality blastocysts) and with clinical pregnancies and birth rates. Bilirubin concentrations in FF were not linked to those found in serum samples of FF donors, thereby strongly suggesting that its over production was due to higher activity of heme oxygenase-1 (HO-1), the key enzyme responsible for bilirubin formation, in granulosa cells, or cumulus cells or oocytes of IF and ultimately leading to bilirubin accumulation in FF. Since increased activity of HO-1 is one of the main enzymatic intracellular mechanisms of defense towards external insults (oxidative/nitrosative stress, inflammation), and since we found correlations among bilirubin and oxidative/nitrosative stress in these FF samples, it may reasonably be supposed that bilirubin increase in FF of IF is the result of protracted exposures to the aforementioned insults evidently playing relevant roles in female infertility.
Collapse
Affiliation(s)
- Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | - Romina Pallisco
- Laboratory of Andrology and Embriology, Alma Res Fertility Center, Via Parenzo 12, 00198 Rome, Italy
| | - Gabriele Bilotta
- Laboratory of Andrology and Embriology, Alma Res Fertility Center, Via Parenzo 12, 00198 Rome, Italy
| | - Francesca Marroni
- Laboratory of Andrology and Embriology, Alma Res Fertility Center, Via Parenzo 12, 00198 Rome, Italy
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Elena Capoccia
- Laboratory of Andrology and Embriology, Alma Res Fertility Center, Via Parenzo 12, 00198 Rome, Italy
| | - Giuseppe Lazzarino
- Division of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- LTA-Biotech srl, Viale Don Orione 3D, 95047 Paternò, Italy
| | - Barbara Tavazzi
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Pasquale Bilotta
- Service of Obstetrics and Gynecology, Alma Res Fertility Center, Via Parenzo 12, 00198 Rome, Italy
| | - Angela Maria Amorini
- Division of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
4
|
Xu X, Hao T, Komba E, Yang B, Hao H, Du W, Zhu H, Zhang H, Zhao X. Improvement of Fertilization Capacity and Developmental Ability of Vitrified Bovine Oocytes by JUNO mRNA Microinjection and Cholesterol-Loaded Methyl-β-Cyclodextrin Treatment. Int J Mol Sci 2022; 24:ijms24010590. [PMID: 36614032 PMCID: PMC9820539 DOI: 10.3390/ijms24010590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
Vitrification of oocytes is crucial for embryo biotechnologies, germplasm cryopreservation of endangered and excellent female animals, and the fertility of humans. However, vitrification significantly impairs the fertilization ability of oocytes, which significantly limits its widely used application. JUNO protein, a receptor for Izumo1, is involved in sperm-oocyte fusion and is an indispensable protein for mammalian fertilization, and its abundance is susceptible to vitrification. However, it is still unclear how vitrification reduces the fertilization capacity of bovine oocytes by affecting JUNO protein. This study was designed to investigate the effect of vitrification on the abundance and post-translational modifications of JUNO protein in bovine oocytes. Our results showed that vitrification did not alter the amino acid sequence of JUNO protein in bovine oocytes. Furthermore, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis results showed that vitrification significantly reduced the number and changed the location of disulfide bonds, and increased the number of both phosphorylation and glycosylation sites of JUNO protein in bovine oocytes. Finally, the fertilization capacity and development ability of vitrified oocytes treated with 200 pg JUNO mRNA microinjection and cholesterol-loaded methyl-β-cyclodextrin (CLC/MβCD) were similar to those of fresh oocytes. In conclusion, our results showed that vitrification of bovine oocytes did not alter the protein sequence of JUNO, but induced post-translational modifications and changed protein abundance. Moreover, the fertilization and development ability of vitrified bovine oocytes were improved by the combination treatment of JUNO mRNA microinjection and CLC/MβCD.
Collapse
|
5
|
Accompaniment of Time-Lapse Parameters and Cumulus Cell RNA-Sequencing in Embryo Evaluation. Reprod Sci 2021; 29:395-409. [PMID: 34642913 DOI: 10.1007/s43032-021-00748-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/18/2021] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the use of time-lapse morphokinetic parameters and cumulus cells transcriptomic profile to achieve a more accurate and non-invasive method in embryo evaluation. Two hundred embryos from 20 couples were evaluated based on morphokinetic characteristics using time-lapse. Embryos were divided into the high-quality, moderate-quality, and bad-quality groups. Non-fertilized oocytes were considered as the fourth group. T5 (time to five cells), S2 (time from three to four cells), and CC2 (time from two to three cells) were recorded. Also, the cumulus cells of the respective oocytes were divided into high-quality, moderate-quality, bad-quality, and non-fertilized groups based on the grading of the embryos. Then their transcriptomic profiles were analyzed by RNA-sequencing. Finally, the correlation between differentially expressed genes and embryo time-lapse parameters was investigated. T5 was the only timing that showed a statistically significant difference between high-quality group and other groups. RNA-sequencing results showed that 37 genes were downregulated and 106 genes were upregulated in moderate, bad-quality, and non-fertilized groups compared to high-quality group (q value < 0.05). These genes were involved in the main biological processes such as cell cycle, DNA repair, cell signaling and communication, transcription, and cell metabolism. Embryos graded in different groups showed different transcriptomic profiles in the related cumulus cells. Therefore, it seems that embryo selection using the combination of cytokinetics and cumulus cells gene expression can improve the accuracy of the embryo selection and pregnancy rate in ART clinics.
Collapse
|
6
|
Kim MJ, Kim YS, Kim YJ, Lee HR, Choi KH, Park EA, Kang KY, Yoon TK, Hwang S, Ko JJ, Kim YS, Lee JH. Upregulation of Low-Density Lipoprotein Receptor of the Steroidogenesis Pathway in the Cumulus Cells Is Associated with the Maturation of Oocytes and Achievement of Pregnancy. Cells 2021; 10:cells10092389. [PMID: 34572039 PMCID: PMC8465166 DOI: 10.3390/cells10092389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/29/2023] Open
Abstract
The maturation of the oocyte is influenced by cumulus cells (CCs) and associated with pregnancy rate, whereas the influencing factors have not been completely elucidated in the CCs. In this study, we identified new regulators of CCs for high-quality oocytes and successful pregnancies during assisted reproductive techniques. CCs were collected from cumulus–oocyte complexes (COCs) in young (≤33 years old) and old (≥40 years old) women undergoing intracytoplasmic sperm injection (ICSI) procedures. We screened for factors differentially expressed between young vs. old CCs and pregnancy vs. non-pregnancy using whole mRNA-seq-next-generation sequencing (NGS). We characterized the transcriptome of the CCs to identify factors critical for achieving pregnancy in IVF cycles. Women in the young and old pregnancy groups exhibited the up- and downregulation of multiple genes compared with the non-pregnancy groups, revealing the differential regulation of several specific genes involved in ovarian steroidogenesis in CCs. It was shown that the low-density lipoprotein (LDL) receptor to the steroidogenesis pathway was upregulated in CCs with higher maturity rates of oocytes in the pregnancy group. In conclusion, a higher pregnancy rate is related to the signaling pathway of steroidogenesis by the LDL receptor in infertile women undergoing IVF procedures.
Collapse
Affiliation(s)
- Myung Joo Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
| | - Young Sang Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
| | - Yu Jin Kim
- Laboratory of Reproductive and Molecular Medicine, CHA Fertility Center Seoul Station, Seoul 04637, Korea;
| | - Hye Ran Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Kyoung Hee Choi
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Eun A Park
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Ki Ye Kang
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Tae Ki Yoon
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
| | - Sohyun Hwang
- CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea
- Correspondence: (J.J.K.); (Y.S.K.); (J.H.L.); Tel.: +82-31-881-7133 (J.J.K.); +82-2-2002-0300 (Y.S.K); +82-2-2002-0406 (J.H.L.)
| | - You Shin Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
- Correspondence: (J.J.K.); (Y.S.K.); (J.H.L.); Tel.: +82-31-881-7133 (J.J.K.); +82-2-2002-0300 (Y.S.K); +82-2-2002-0406 (J.H.L.)
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Laboratory of Reproductive and Molecular Medicine, CHA Fertility Center Seoul Station, Seoul 04637, Korea;
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea
- Correspondence: (J.J.K.); (Y.S.K.); (J.H.L.); Tel.: +82-31-881-7133 (J.J.K.); +82-2-2002-0300 (Y.S.K); +82-2-2002-0406 (J.H.L.)
| |
Collapse
|
7
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
8
|
Němeček D, Chmelikova E, Petr J, Kott T, Sedmíková M. The effect of carbon monoxide on meiotic maturation of porcine oocytes. PeerJ 2021; 9:e10636. [PMID: 33828903 PMCID: PMC7996072 DOI: 10.7717/peerj.10636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress impairs the correct course of meiotic maturation, and it is known that the oocytes are exposed to increased oxidative stress during meiotic maturation in in vitro conditions. Thus, reduction of oxidative stress can lead to improved quality of cultured oocytes. The gasotransmitter carbon monoxide (CO) has a cytoprotective effect in somatic cells. The CO is produced in cells by the enzyme heme oxygenase (HO) and the heme oxygenase/carbon monoxide (HO/CO) pathway has been shown to have an antioxidant effect in somatic cells. It has not yet been investigated whether the CO has an antioxidant effect in oocytes as well. We assessed the level of expression of HO mRNA, using reverse transcription polymerase chain reaction. The HO protein localization was evaluated by the immunocytochemical method. The influence of CO or HO inhibition on meiotic maturation was evaluated in oocytes cultured in a culture medium containing CO donor (CORM-2 or CORM-A1) or HO inhibitor Zn-protoporphyrin IX (Zn-PP IX). Detection of reactive oxygen species (ROS) was performed using the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate. We demonstrated the expression of mRNA and proteins of both HO isoforms in porcine oocytes during meiotic maturation. The inhibition of HO enzymes by Zn-PP IX did not affect meiotic maturation. CO delivered by CORM-2 or CORM-A1 donors led to a reduction in the level of ROS in the oocytes during meiotic maturation. However, exogenously delivered CO also inhibited meiotic maturation, especially at higher concentrations. In summary, the CO signaling molecule has antioxidant properties in porcine oocytes and may also be involved in the regulation of meiotic maturation.
Collapse
Affiliation(s)
- David Němeček
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Uhřiněves, Czech Republic
| | - Tomas Kott
- Institute of Animal Science, Uhřiněves, Czech Republic
| | - Markéta Sedmíková
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Zhang Q, Su J, Kong W, Fang Z, Li Y, Huang Z, Wen J, Wang Y. Roles of miR-10a-5p and miR-103a-3p, Regulators of BDNF Expression in Follicular Fluid, in the Outcomes of IVF-ET. Front Endocrinol (Lausanne) 2021; 12:637384. [PMID: 34054723 PMCID: PMC8150000 DOI: 10.3389/fendo.2021.637384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays critical roles in the physiological process of oocyte mature and IVF outcomes of patients with infertility. However, the regulation of BDNF expression in the microenvironment surrounding the oocyte is still unknown. We initially predicted some microRNA (miRNA) candidates targeting bdnf with a series of bioinformatics analysis tools to determine the underlying regulatory mechanisms of BDNF, particularly the effect of miRNAs on BDNF expression. Then, we assessed whether the expression of these 14 selected miRNAs was negatively associated with BDNF expression in follicular fluid (FF) samples obtained from mature (>18 mm) or immature (<15 mm) follicles. Finally, we used the candidate miRNAs, miR-103a-3p and miR-10a-5p, to further investigate the relationship between their expression in FF and the outcomes of infertile patients undergoing IVF-ET treatment. The results of the bioinformatics analysis revealed 14 miRNAs that might directly regulate BDNF expression and might have a close relationship with oocyte development. BDNF was expressed at significantly lower levels in FF from immature follicles than in FF from mature follicles, and only the expression of miR-103a-3p and miR-10a-5p was negatively correlated with BDNF expression in FF. Moreover, in another cohort of 106 infertile women undergoing IVF-ET treatment, miR-103a-3p or miR-10a-5p expression predicted the developmental status of the corresponding oocytes in which high expression of miR-103a-3p or miR-10a-5p resulted in a poor quality of embryo on days 3 and 5 during the IVF-ET treatment. In conclusion, our study is the first to show that miR-103a-3p or miR-10a-5p negatively affects the maturation of oocytes by regulating the expression of BDNF in human FF. Additionally, the expression levels of miR-103a-3p or miR-10a-5p in FF may predict the outcomes of IVF, which are helpful for improving embryo selection and consequently the IVF success rate in the clinic.
Collapse
Affiliation(s)
- Qiyao Zhang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinfeng Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Kong
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhou Fang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqiang Huang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wen
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Ji Wen, ; Yue Wang,
| | - Yue Wang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Ji Wen, ; Yue Wang,
| |
Collapse
|
10
|
Nuzzi R, Bergandi L, Zabetta LC, D’Errico L, Riscaldino F, Menegon S, Silvagno F. In vitro generation of primary cultures of human hyalocytes. Mol Vis 2020; 26:818-829. [PMID: 33456301 PMCID: PMC7803295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/28/2020] [Indexed: 10/31/2022] Open
Abstract
Purpose A growing number of studies on animal models have demonstrated that some ocular diseases are the result of the interaction between hyalocytes and the ocular inflammatory setting. Endogenous and exogenous substances might alter the structure and behavior of hyalocytes that can contribute to the pathogenesis of some ocular diseases. Obtaining primary cultures of human hyalocytes could help understand the role of these cells in response to different treatments. Methods Hyalocytes were isolated from eyes of 54 patient volunteers subjected to vitrectomy for different clinical reasons. By testing different matrices and growth media, we reproducibly generated primary cultures of hyalocytes that we characterized morphologically and biologically, basally and upon treatment with several agents (basic fibroblast growth factor (bFGF), transforming growth factor beta 1 (TGF-β), platelet-derived growth factor subunit-BB (PDGF-BB), ascorbic acid, dexamethasone, and hydrogen peroxide). Results We were able to generate primary cultures from vitreous human samples, growing the cells on collagen-coated plates in Iscove's modified Dulbecco's medium supplemented with 10% fetal bovine serum; primary cells expressed the hyalocyte markers. Specific cytoskeletal modifications were observed upon treatment with bFGF, TGF-β, PDGF-BB, ascorbic acid, dexamethasone, and hydrogen peroxide. Only bFGF was able to promote cell growth and hyaluronic acid production. Conclusions We describe for the first time the generation and the characterization of primary cultures of human hyalocytes from living donors. Although human hyalocytes share some characteristics with animal hyalocytes, human hyalocytes have their own features typical of the species, confirming how important human experimental models are for investigating human pathologies and their treatments.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic Section, Department of Surgical Sciences, University of Torino, Torino, Italy
| | | | - Lorenzo Coda Zabetta
- Eye Clinic Section, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Laura D’Errico
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesco Riscaldino
- Eye Clinic Section, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Silvia Menegon
- Department of Oncology, University of Torino, Torino, Italy
| | | |
Collapse
|
11
|
Canosa S, Paschero C, Carosso A, Leoncini S, Mercaldo N, Gennarelli G, Benedetto C, Revelli A. Effect of a Combination of Myo-Inositol, Alpha-Lipoic Acid, and Folic Acid on Oocyte Morphology and Embryo Morphokinetics in non-PCOS Overweight/Obese Patients Undergoing IVF: A Pilot, Prospective, Randomized Study. J Clin Med 2020; 9:jcm9092949. [PMID: 32932604 PMCID: PMC7564928 DOI: 10.3390/jcm9092949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Herein we aimed at assessing whether Myo-Inositol (MI), Alpha–Lipoic acid (ALA), and Folic acid (FA) could improve oocyte quality and embryo development in non-PCOS overweight/obese women undergoing IVF. Three hundred and twenty-four mature oocytes were obtained from non-PCOS overweight/obese patients, randomized to receive either MI, ALA, and FA (MI + ALA + FA group, n = 155 oocytes) or FA alone (FA-only group, n = 169 oocytes). Oocytes were examined using Polarized Light Microscopy to assess morphological features of zona pellucida (ZP) and meiotic spindle (MS). One hundred and seventy-six embryos (n = 84 in the MI + ALA + FA group, n = 92 in the FA-only group) were assessed by conventional morphology on days 2 and 5, as well as using the Time-Lapse System morphokinetic analysis. A significantly higher ZP retardance, area, and thickness (p < 0.05), and a shorter MS axis (p < 0.05) were observed in the MI + ALA + FA group, suggesting a positive effect on oocyte quality. Conventional morphology evaluation on day 2 showed a higher mean embryo score in the MI + ALA + FA group, whereas embryo morphokinetic was comparable in the two groups. Overall, our data show a possible beneficial effect of the combination of MI, ALA, and FA on oocyte and embryo morphology, encouraging testing of this combination in adequately powered randomized trials to assess their impact of clinical IVF results.
Collapse
|