1
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
2
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Das A, Destouni A. Novel insights into reproductive ageing and menopause from genomics. Hum Reprod 2023; 38:195-203. [PMID: 36478237 DOI: 10.1093/humrep/deac256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
The post-reproductive phase or menopause in females is triggered by a physiological timer that depends on a threshold of follicle number in the ovary. Curiously, reproductive senescence appears to be decoupled from chronological age and is instead thought to be a function of physiological ageing. Ovarian ageing is associated with a decrease in oocyte developmental competence, attributed to a concomitant increase in meiotic errors. Although many biological hallmarks of general ageing are well characterized, the precise mechanisms underlying the programmed ageing of the female reproductive system remain elusive. In particular, the molecular pathways linking the external menopause trigger to the internal oocyte chromosome segregation machinery that controls fertility outcomes is unclear. However, recent large scale genomics studies have begun to provide insights into this process. Next-generation sequencing integrated with systems biology offers the advantage of sampling large datasets to uncover molecular pathways associated with a phenotype such as ageing. In this mini-review, we discuss findings from these studies that are crucial for advancing female reproductive senescence research. Targets identified in these studies can inform future animal models for menopause. We present three potential hypotheses for how external pathways governing ovarian ageing can influence meiotic chromosome segregation, with evidence from both animal models and molecular targets revealed from genomics studies. Although still in incipient stages, we discuss the potential of genomics studies combined with epigenetic age acceleration models for providing a predictive toolkit of biomarkers controlling menopause onset in women. We also speculate on future research directions to investigate extending female reproductive lifespan, such as comparative genomics in model systems that lack menopause. Novel genomics insights from such organisms are predicted to provide clues to preserving female fertility.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aspasia Destouni
- Laboratory of Cytogenetics and Molecular Genetics, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
4
|
Morales R, Lledo B, Ortiz JA, Lozano FM, Garcia EM, Bernabeu A, Fuentes A, Bernabeu R. Identification of new variants and candidate genes in women with familial premature ovarian insufficiency using whole-exome sequencing. J Assist Reprod Genet 2022; 39:2595-2605. [PMID: 36208357 PMCID: PMC9723088 DOI: 10.1007/s10815-022-02629-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify candidate variants in genes possibly associated with premature ovarian insufficiency (POI). METHODS Fourteen women, from 7 families, affected by idiopathic POI were included. Additionally, 98 oocyte donors of the same ethnicity were enrolled as a control group. Whole-exome sequencing (WES) was performed in 14 women with POI to identify possibly pathogenic variants in genes potentially associated with the ovarian function. The candidate genes selected in POI patients were analysed within the exome results of oocyte donors. RESULTS After the variant filtering in the WES analysis of 7 POI families, 23 possibly damaging genetic variants were identified in 22 genes related to POI or linked to ovarian physiology. All variants were heterozygous and five of the seven families carried two or more variants in different genes. We have described genes that have never been associated to POI pathology; however, they are involved in important biological processes for ovarian function. In the 98 oocyte donors of the control group, we found no potentially pathogenic variants among the 22 candidate genes. CONCLUSION WES has previously shown as an efficient tool to identify causative genes for ovarian failure. Although some studies have focused on it, and many genes are identified, this study proposes new candidate genes and variants, having potentially moderate/strong functional effects, associated with POI, and argues for a polygenic etiology of POI in some cases.
Collapse
Affiliation(s)
- R Morales
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain.
| | - B Lledo
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - J A Ortiz
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - F M Lozano
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - E M Garcia
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - A Bernabeu
- Reproductive Medicine, Instituto Bernabeu, 03016, Alicante, Spain
| | - A Fuentes
- Reproductive Medicine, Instituto Bernabeu, 03016, Alicante, Spain
| | - R Bernabeu
- Reproductive Medicine, Instituto Bernabeu, 03016, Alicante, Spain
| |
Collapse
|
5
|
Wang X, Chen ZJ. A decade of discovery: the stunning progress of premature ovarian insufficiency research in China. Biol Reprod 2022; 107:27-39. [PMID: 35639630 DOI: 10.1093/biolre/ioac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 04/13/2021] [Indexed: 11/15/2022] Open
Abstract
Premature ovarian insufficiency (POI) is one of key aspects of ovarian infertility. Due to early cession of ovarian function, POI imposes great challenges on the physiological and psychological health of women, and becomes a common cause of female infertility. In the worldwide, there has been a special outpouring of concern for about four million reproductive-aged women suffering from POI in China. Driven by advances in new technologies and efforts invested by Chinses researchers, understanding about POI has constantly been progressing over the past decade. Here, we comprehensively summarize and review the landmark development and achievements from POI studies in China spanning 2011 to 2020, which aims to provide key insights from bench to bedside.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Li J, Peng T, Wang L, Long P, Quan R, Tan H, Zeng M, Wu X, Yang J, Xiao H, Shi X. Heterozygous FMN2 missense variant found in a family case of premature ovarian insufficiency. J Ovarian Res 2022; 15:31. [PMID: 35227295 PMCID: PMC8886936 DOI: 10.1186/s13048-022-00960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. Results The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. Conclusion This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00960-y.
Collapse
Affiliation(s)
- Jie Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tianliu Peng
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Le Wang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Panpan Long
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Ruping Quan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Hangjing Tan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Minghua Zeng
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Xue Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junting Yang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Xiaobo Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Moiseeva AV, Kudryavtseva VA, Nikolenko VN, Gevorgyan MM, Unanyan AL, Bakhmet AA, Sinelnikov MY. Genetic determination of the ovarian reserve: a literature review. J Ovarian Res 2021; 14:102. [PMID: 34362406 PMCID: PMC8349022 DOI: 10.1186/s13048-021-00850-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
The ovarian reserve is one of the most important indicators of female fertility. It allows for the evaluation of the number of viable oocytes. This parameter is actively used in pregnancy planning and in assisted reproductive technology application, as it determines chances of successful fertilization and healthy pregnancy. Due to increased attention towards diagnostic tests evaluating the ovarian reserve, there has been a growing interest in factors that influence the state of the ovarian reserve. True reasons for pathological changes in the ovarian reserve and volume have not yet been explored in depth, and current diagnostic screening methods often fall short in efficacy. In the following review we analyze existing data relating to the study of the ovarian reserve through genetic testing, determining specific characteristics of the ovarian reserve through genetic profiling. We explore existing studies dedicated to finding specific genetic targets influencing the state of the ovarian reserve.
Collapse
Affiliation(s)
| | | | - Vladimir N Nikolenko
- Sechenov University, Mohovaya 11c10, Moscow, Russian Federation.,Moscow State University, Moscow, Russian Federation
| | | | - Ara L Unanyan
- Sechenov University, Mohovaya 11c10, Moscow, Russian Federation
| | | | - Mikhail Y Sinelnikov
- Sechenov University, Mohovaya 11c10, Moscow, Russian Federation. .,Research Institute of Human Morphology, Moscow, Russian Federation.
| |
Collapse
|
8
|
Searching for female reproductive aging and longevity biomarkers. Aging (Albany NY) 2021; 13:16873-16894. [PMID: 34156973 PMCID: PMC8266318 DOI: 10.18632/aging.203206] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Female reproductive aging is, in a way, a biological phenomenon that develops along canonical molecular pathways; however, it has particular features. Recent studies revealed complexity of the interconnections between reproductive aging and aging of other systems, and even suggested a cause-effect uncertainty between them. It was also shown that reproductive aging can impact aging processes in an organism at the level of cells, tissues, organs, and systems. Women at the end of their reproductive lives are characterized by the accelerated incidence of age-related diseases. Timing of the onset of menarche and menopause and variability in the duration of reproductive life carry a latent social risk: not having enough information about the reproductive potential, women keep on postponing childbirth. Identification and use of the most accurate and sensitive aging biomarkers enable the prediction of menopause timing and quantification of the true biological and reproductive ages of an organism. We discuss current views on reproductive aging and peculiarities of using available biomarkers of aging. We also consider latest advances in the search for potential genetic markers of reproductive aging. Finally, we posit the importance of determining the female biological age and highlight potential research directions in this area.
Collapse
|
9
|
Forecasting early onset diminished ovarian reserve for young reproductive age women. J Assist Reprod Genet 2021; 38:1853-1860. [PMID: 33786734 DOI: 10.1007/s10815-021-02155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To investigate the biological networks associated with DOR in young women and the subsequent molecular impact on preimplantation embryos. METHODS Whole peripheral blood was collected from patients: young women presenting with diminished ovarian reserve (DOR) and age-matched young women with normal ovarian reserve. Maternal exome sequencing was performed on the NovaSEQ 6000 and sequencing validation was completed using Taqman® SNP Genotyping Assays. Blastocyst global methylome and transcriptome sequencing were also analyzed. RESULTS Exome sequencing revealed 730 significant DNA variants observed exclusively in the young DOR patients. Bioinformatic analysis revealed a significant impact to the Glucocorticoid receptor (GR) signaling pathway and each young DOR female had an average of 6.2 deleterious DNA variants within this pathway. Additional stratification based on patient age resulted in a cut-off at 31 years for young DOR discrimination. Embryonic global methylome sequencing resulted in only a very small number of total CpG sites with methylation alterations (1,775; 0.015% of total) in the DOR group. Additionally, there was no co-localization between these limited number of altered CpG sites and significant variants, genes, or pathways. RNA sequencing also resulted in no biologically significant transcription changes between DOR blastocysts and controls. CONCLUSION GR signaling DNA variants were observed in women with early-onset DOR potentially compromising oocyte production and quality. However, no significant downstream effects on biological processes appear to impact the resulting blastocyst. The ability to forecast premature DOR for young women may allow for earlier identification and clinical intervention for this patient population.
Collapse
|
10
|
Tesarik J, Galán-Lázaro M, Mendoza-Tesarik R. Ovarian Aging: Molecular Mechanisms and Medical Management. Int J Mol Sci 2021; 22:1371. [PMID: 33573050 PMCID: PMC7866420 DOI: 10.3390/ijms22031371] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
This is a short review of the basic molecular mechanisms of ovarian aging, written with a particular focus on the use of this data to improve the diagnostic and therapeutic protocols both for women affected by physiological (age-related) ovarian decay and for those suffering premature ovarian insufficiency. Ovarian aging has a genetic basis that conditions the ovarian activity via a plethora of cell-signaling pathways that control the functions of different types of cells in the ovary. There are various factors that can influence these pathways so as to reduce their efficiency. Oxidative stress, often related to mitochondrial dysfunction, leading to the apoptosis of ovarian cells, can be at the origin of vicious circles in which the primary cause feeds back other abnormalities, resulting in an overall decline in the ovarian activity and in the quantity and quality of oocytes. The correct diagnosis of the molecular mechanisms involved in ovarian aging can serve to design treatment strategies that can slow down ovarian decay and increase the quantity and quality of oocytes that can be obtained for an in vitro fertilization attempt. The available treatment options include the use of antioxidants, melatonin, growth hormones, and mitochondrial therapies. All of these treatments have to be considered in the context of each couple's history and current clinical condition, and a customized (patient-tailored) treatment protocol is to be elaborated.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen Clinic, 18006 Granada, Spain; (M.G.-L.); (R.M.-T.)
| | | | | |
Collapse
|
11
|
Ding X, Schimenti JC. Strategies to Identify Genetic Variants Causing Infertility. Trends Mol Med 2021; 27:792-806. [PMID: 33431240 DOI: 10.1016/j.molmed.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual. Genome modulation and editing technologies have revolutionized our ability to functionally test such variants, and also provide a potential means for clinical correction of infertility variants. This review addresses strategies being used to identify causative variants of infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|