1
|
Thuwanut P, Leonel ECR, Rocha Ruiz TF, Sirayapiwat P, Kristensen SG, Amorim CA. Human ovarian tissue xenotransplantation: advancements, challenges, and future perspectives. Hum Reprod 2025:deae291. [PMID: 39749868 DOI: 10.1093/humrep/deae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Ovarian tissue cryopreservation and transplantation has emerged as a promising fertility preservation technique for individuals facing premature ovarian insufficiency due to various medical conditions or treatments. Xenotransplantation, involving the transplantation of ovarian tissue into animal hosts, has played a pivotal role in refining ovarian tissue cryopreservation and transplantation techniques and addressing key challenges. This review provides a comprehensive overview of the current landscape of ovarian tissue xenotransplantation research, focusing on its applications in investigating ovarian biology, optimizing ovarian tissue cryopreservation and transplantation protocols, and assessing safety concerns. It also explores the utilization of xenografting of human ovarian tissue in mouse models in the last 10 years. Key findings from preclinical studies investigating grafting site optimization, cryopreservation protocol refinement, the development of strategies to mitigate chemotherapy-induced damage, follicle development, tissue revascularization, and the risk of malignant cell reintroduction are summarized. Moreover, the review examines the ethical considerations surrounding the use of animals in ovarian tissue xenotransplantation research and suggests emerging alternative models that aim to minimize animal use while maximizing clinical relevance.
Collapse
Affiliation(s)
- Paweena Thuwanut
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ellen C R Leonel
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thalles Fernando Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Porntip Sirayapiwat
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Zhou Y, Wang W, Todorov P, Pei C, Isachenko E, Rahimi G, Mallmann P, Nawroth F, Isachenko V. RNA Transcripts in Human Ovarian Cells: Two-Time Cryopreservation Does Not Affect Developmental Potential. Int J Mol Sci 2023; 24:ijms24086880. [PMID: 37108043 PMCID: PMC10139221 DOI: 10.3390/ijms24086880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Sometimes, for medical reasons, when a frozen tissue has already thawed, an operation by re-transplantation may be cancelled, and ovarian tissues should be re-frozen for transplantation next time. Research about the repeated cryopreservation of ovarian cells is rarely reported. It has been published that there is no difference in the follicle densities, proportions of proliferation of early preantral follicles, appearance of atretic follicles, or ultrastructural quality of frozen-thawed and re-frozen-rethawed tissue. However, the molecular mechanisms of a repeated cryopreservation effect on the developmental potential of ovarian cells are unknown. The aim of our experiments was to investigate the effect of re-freezing and re-thawing ovarian tissue on gene expression, gene function annotation, and protein-protein interactions. The morphological and biological activity of primordial, primary, and secondary follicles, aimed at using these follicles for the formation of artificial ovaries, was also detected. Second-generation mRNA sequencing technology with a high throughput and accuracy was adopted to determine the different transcriptome profiles in the cells of four groups: one-time cryopreserved (frozen and thawed) cells (Group 1), two-time cryopreserved (re-frozen and re-thawed after first cryopreservation) cells (Group 2), one-time cryopreserved (frozen and thawed) and in vitro cultured cells (Group 3), and two times cryopreserved (re-frozen and re-thawed after first cryopreservation) and in vitro cultured cells (Group 4). Some minor changes in the primordial, primary, and secondary follicles in terms of the morphology and biological activity were detected, and finally, the availability of these follicles for the formation of artificial ovaries was explored. It was established that during cryopreservation, the CEBPB/CYP19A1 pathway may be involved in regulating estrogen activity and CD44 is crucial for the development of ovarian cells. An analysis of gene expression in cryopreserved ovarian cells indicates that two-time (repeated) cryopreservation does not significantly affect the developmental potential of these cells. For medical reasons, when ovarian tissue is thawed but cannot be transplanted, it can be immediately re-frozen again.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Wanxue Wang
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Frank Nawroth
- Center for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes Medical Center MVZ Hamburg, 20095 Hamburg, Germany
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| |
Collapse
|
3
|
Transplantation of Refrozen Ovarian Cortical Strips Retrieved from a Cryopreserved Whole Ovary: Proof of Feasibility. J Clin Med 2022; 11:jcm11174942. [PMID: 36078872 PMCID: PMC9456442 DOI: 10.3390/jcm11174942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
We report successful clinical outcomes after transplantation of refrozen-rethawed cortical strips from a cryopreserved whole ovary in a patient diagnosed with stage IIIb rectal adenocarcinoma. Whole ovary cryopreservation was proposed as a fertility preservation strategy in 2006 prior to radiotherapy, chemotherapy and oncological surgery. To allow for minimal residual disease screening before ovarian reimplantation, the whole ovary was thawed and dissected into cortical strips. While awaiting the results, the majority of the cortical strips were refrozen. These refrozen-rethawed cortical strips were laparoscopically grafted to 2 sites: the previously irradiated pelvic cavity and the non-irradiated extrapelvic cavity. Ovarian function resumption was assessed by recovery of menses, hormone levels, ultrasound and oocyte pick-up following controlled ovarian stimulation (COS). Restoration of ovarian function occurred 6 months after reimplantation, with recovery of menses and estradiol secretion. A total of 12 cycles were followed by the IVF department. A second reimplantation was performed 1.5 years later, since the grafts were found to have stopped functioning for >3 consecutive months. Overall, 3 fertilizable oocytes were retrieved transabdominally from the extrapelvic graft following COS, yielding 2 embryos and culminating in one fresh embryo transfer, but no pregnancy. Concerning the reimplantation site, no ovarian activity was detected in the graft placed in the previously irradiated pelvic cavity. Indeed, only fibrotic-looking tissue was observed in the pelvic site at second laparoscopy 1.5 years later, while ovarian activity was noted in the extrapelvic graft, showing a large antral follicle. All in all, transplantation of refrozen-rethawed cortical strips from a cryopreserved whole ovary can lead to ovarian function resumption and embryo development if grafted to a non-irradiated field.
Collapse
|
4
|
Dolmans MM, Demeestere I, Anckaert E, De Vos M. Proceedings of the Oncofertility Congress of the "Freezing Ovarian Tissue and Oocytes" (FOTO) Consortium Brussels. J Assist Reprod Genet 2022; 39:1715-1725. [PMID: 35751830 PMCID: PMC9428079 DOI: 10.1007/s10815-022-02552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Gynecology Research Laboratory, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory On Human Reproduction, Fertility Clinic, CUB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), 1090, Brussels, Belgium
| | - Michel De Vos
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), 1090, Brussels, Belgium.
- Brussels IVF, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| |
Collapse
|