1
|
Zhao Y, Namei E, Yang B, Bao X, Sun W, Subudeng G, Cao G, Li H, Wang G. Cyclic AMP mediates ovine cumulus-oocyte gap junctional function via balancing connexin 43 expression and phosphorylation. Endocr Connect 2023; 12:e230337. [PMID: 37855365 PMCID: PMC10620458 DOI: 10.1530/ec-23-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Gap junction channels in cumulus-oocyte complexes (COCs) enable the transmission and communication of small molecular signals between adjacent cells, such as cAMP. However, the regulation of gap junction function (GJF) by cAMP and the underlying mechanisms involved are not fully clarified. This study investigated the effect of cAMP on connexin 43 (CX43) expression and GJF in ovine COCs using immunofluorescence, quantitative real-time PCR (qRT-PCR), western blotting, and GJF detection. The CX43 was only found in the cumulus cells (CCs) side of ovine COC. The intra-oocyte cAMP showed a significant increase at 30 min, while the intra-CC cAMP exhibited two peaks at 10 min and 1 h during in vitro maturation (IVM). Phosphorylated CX43 protein exhibited an immediate increase at 10 min, and CX43 protein displayed two peaks at 10 min and 1 h during IVM. The duration of pre-IVM exposure to forskolin and IBMX significantly enhanced phosphorylated and total CX43, as well as Gja1 and Creb genes, for 10 min; these effects were counteracted by Rp-cAMP. Both pre-IVM with forskolin and IBMX for 1 h and the GJF and CX43/p-CX43 ratio were elevated. The closure of gap junction channels caused by phosphorylated CX43 to prevent cAMP outflow from oocytes in early IVM of COC. Cyclic AMP upregulated phosphorylated and total CX43 via genomic and non-genomic pathways, but its functional regulation was dependent on the balance of the two proteins. This study provides a new insight into the regulatory mechanism between cAMP and GJF, which would improve IVM in animal and clinical research.
Collapse
Affiliation(s)
- Yufen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Erge Namei
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Bingxue Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xiangnan Bao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, PR China
- National Center of Technology Innovation for Dairy Industry, Hohhot, PR China
| | - Wei Sun
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, PR China
| | - Gerile Subudeng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Gui Wang
- Animal Genetic Breeding and Reproduction Research Center, Hetao College, Bayannur, PR China
| |
Collapse
|
2
|
Bordás L, Somoskői B, Török D, Vincze BN, Cseh S. Post-thaw viability of mouse preantral follicles after cryopreservation with cryotube freezing and OPS vitrification procedures. Reprod Biol 2023; 23:100752. [PMID: 36905824 DOI: 10.1016/j.repbio.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
In the field of reproductive science, there is an increased interest in the application of ovarian preantral follicles. Since the ovary contains a great amount of preantral follicles (PAF), the cryopreservation and in vitro culture of such follicles support the fertility preservation of domestic animals with high genetic value, endangered or zoo animals, and women before anticancer therapy. To date, no standard freezing or vitrification protocol is available in human or animals. The aim of the present study was to examine the viability of preantral follicles cryopreserved using freezing or vitrification protocols: cryotube freezing or OPS vitrification.
Collapse
Affiliation(s)
- Lilla Bordás
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| | - Bence Somoskői
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary.
| | - Dóra Török
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| | - Boglárka Nóra Vincze
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| | - Sándor Cseh
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| |
Collapse
|
3
|
Xie J, Xu X, Liu S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front Cell Dev Biol 2023; 11:1087612. [PMID: 36743407 PMCID: PMC9893509 DOI: 10.3389/fcell.2023.1087612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
During folliculogenesis, the oocyte and surrounding cumulus cells form an ensemble called the cumulus-oocyte complex (COC). Due to their interdependence, research on the COC has been a hot issue in the past few decades. A growing body of literature has revealed that intercellular communication is critical in determining oocyte quality and ovulation. This review provides an update on the current knowledge of COC intercellular communication, morphology, and functions. Transzonal projections (TZPs) and gap junctions are the most described structures of the COC. They provide basic metabolic and nutrient support, and abundant molecules for signaling pathways and regulations. Oocyte-secreted factors (OSFs) such as growth differentiation factor 9 and bone morphogenetic protein 15 have been linked with follicular homeostasis, suggesting that the communications are bidirectional. Using advanced techniques, new evidence has highlighted the existence of other structures that participate in intercellular communication. Extracellular vesicles can carry transcripts and signaling molecules. Microvilli on the oocyte can induce the formation of TZPs and secrete OSFs. Cell membrane fusion between the oocyte and cumulus cells can lead to sharing of cytoplasm, in a way making the COC a true whole. These findings give us new insights into related reproductive diseases like polycystic ovary syndrome and primary ovarian insufficiency and how to improve the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Jun Xie
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Suying Liu,
| |
Collapse
|
4
|
Gomes FDR, de Brito DCC, de Sá NAR, Ñaupas LVS, Palomino GJQ, da Silva RF, Lopes ÉPF, Mbemya GT, Alves BG, Zelinski M, de Figueiredo JR, Rodrigues APR. Development of sheep secondary follicles and preservation of aromatase and metalloproteinases 2 and 9 after vitrification and in vitro culture. Cell Tissue Bank 2022; 23:247-259. [PMID: 34152507 DOI: 10.1007/s10561-021-09937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
The cryopreservation of secondary follicles (SF) is a promising alternative to preserve the reproductive potential both in humans and animals in situations in which the transplantation of ovarian tissue is not possible. The objective of the present study was cryopreserved SF isolated sheep. Beyond follicular morphology, viability and development, we investigated proteins related to steroidogenic function and basement membrane remodeling [metalloproteinases 2 (MMP-2) and 9 (MMP-9)] in fresh SF (FSF) and vitrified SF (VSF) followed by in vitro culture for 6 (D6) or 12 days (D12). The percentage of intact follicles, follicular and oocyte diameter of the VSF were lower than FSF on both days of culture (P < 0.05). The VSF viability was statistically reduced from D6 (95.5%) to D12 (77.3%) but did not differ from the FSF on both days (D6:96.2% to D12:86.5%). Antrum formation in the VSF (D6: 59.13%; D12: 79.56%) was significantly lower than the FSF (D6: 79.61%; D12: 92.23%). However, an increase in this percentage was observed from D6 to D12 in both groups. Aromatase showed stronger labeling on FSF D6 and VSF D12 compared to other treatments (P < 0.05). MMP-2 showed a similar pattern of labeling in FSF D6 and VSF D12, similarly to that observed in FSF D12 and VSF D6. MMP-9 was similar in FSF and VSF cultivated for 6 and 12 days. In conclusion, VSF are able to grow and develop during 12 days of in vitro culture and showed evidence of preservation of steroidogenic function and remodeling of the basement membrane.
Collapse
Affiliation(s)
- Francisco Denilson Rodrigues Gomes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Danielle Cristina Calado de Brito
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Naíza Arcângela Ribeiro de Sá
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Lucy Vanessa Sulca Ñaupas
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Gaby Judith Quispe Palomino
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Renato Felix da Silva
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Éverton Pimentel Ferreira Lopes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Gildas Tetaping Mbemya
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | | | - Mary Zelinski
- Oregon National Primate Research Center, Beaverton, OR, USA
| | - José Ricardo de Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Ana Paula Ribeiro Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil.
| |
Collapse
|
5
|
Silva RF, Lima LF, Ferreira ACA, Silva AFB, Alves DR, Alves BG, Oliveira AC, Morais SM, Rodrigues APR, Santos RR, Figueiredo JR. Eugenol Improves Follicular Survival and Development During in vitro Culture of Goat Ovarian Tissue. Front Vet Sci 2022; 9:822367. [PMID: 35573397 PMCID: PMC9096615 DOI: 10.3389/fvets.2022.822367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effects of different concentrations (10, 20, or 40 μM) of eugenol (EUG 10, EUG 20, or EUG 40), ascorbic acid (50 μg/mL; AA) or anethole (300 μg/mL; ANE 300) on the in-vitro survival and development of goat preantral follicles and oxidative stress in the cultured ovarian tissue. Ovarian fragments from five goats were cultured for 1 or 7 days in Alpha Minimum Essential Medium (α-MEM+) supplemented or not with AA, ANE 300, EUG 10, EUG 20 or EUG 40. On day 7 of culture, when compared to MEM, the addition of EUG 40 had increased the rate of follicular development, as observed by a decrease in the proportion of primordial follicles alongside with an increase in the rate of normally developing follicles. Furthermore, EUG 40 significantly increased both follicular and oocyte diameters. Subsequently, ovarian fragments from three goats were cultured for 1 or 7 days in α-MEM+ supplemented or not with AA, ANE 300 or EUG 40. All tested antioxidants, except ANE 300, were able to significantly decrease the levels of reactive oxygen species in the ovarian tissue, but EUG 40 could most efficiently neutralize free radicals. All ovarian tissues cultured in the presence of antioxidants, especially EUG 40, presented a significant decrease in H3K4me3 labeling, indicating a silencing of genes that play a role in the inhibition of follicular activation and apoptosis induction. When compared to cultured control tissues, both EUG 40 and ANE 300 significantly increased the intensity of calreticulin labeling in growing follicles. The mRNA relative expression of ERP29 and KDM3A was significantly increased when the culture medium was supplemented with EUG 40, indicating a response to ER stress experienced during culture. In conclusion, EUG 40 improved in-vitro follicle survival, activation and development and decreased ROS production, ER stress and histone lysine methylation in goat ovarian tissue.
Collapse
Affiliation(s)
- R. F. Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
- *Correspondence: R. F. Silva
| | - L. F. Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - Anna C. A. Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - A. F. B. Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - D. R. Alves
- Natural Product Chemistry Laboratory, State University of Ceara, Fortaleza, Brazil
| | - B. G. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - A. C. Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, Brazil
| | - Selene M. Morais
- Natural Product Chemistry Laboratory, State University of Ceara, Fortaleza, Brazil
| | - Ana Paula R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | | | - J. R. Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| |
Collapse
|
6
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Hajati F, Kashi AM, Totonchi M, Valojerdi MR. Post-thawing and culture comparison of three routine slow freezing methods for human ovarian tissue cryopreservation: Histological, molecular, and hormonal aspects. Cryobiology 2021; 104:32-41. [PMID: 34808110 DOI: 10.1016/j.cryobiol.2021.11.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
To find the gold standard out of three pre-established routine slow freezing (SF) methods, ovarian cortex tissues of nine transsexual individuals were cryopreserved and compared to each other, as well as the control (fresh) samples. Histological, genomic, and endocrinological effects of the SFs were assessed post-thawing and after a seven-day culture period. SF1 included 10% dimethyl-sulfoxide (Me2SO) in the base medium (BM), SF2 had 1.5 M/L ethylene-glycol (EG) and 0.1 M/L sucrose in the BM, and SF3 consisted of 6% Me2SO, 6% EG and 0.15 M/L sucrose in the BM. The cortical tissue strips went under a programmed cooling process and were stored in liquid nitrogen. Histological criteria (tissue damage and follicular quality), as well as gene expression levels, were assessed in the thawed and control tissues. Half of the thawed and control tissues were cultured for seven days and their histology, genetic profile, and hormonal status were examined as the reflection of the avascular tension effect. Post-thawing tissue damage was similar between all groups but significantly increased post-culture (P < 0.05). The percentages of high-quality follicles diminished in all SFs after thawing and culture (P < 0.05) except for the similarity of post-thawing SF3, compared to control. The genetic profile of the tissue after thawing and culture suggested quiescence/activation balance in SF1 and 2 and significant down-regulation in SF3, compared to the control specimens (P < 0.05). Post-thawing BAX:BCL2 was higher than control in SF1 and SF3 (P < 0.05), while this ratio in SF2 was similar to the control. However, after culture this ratio was similar to that of control in SF3 and diminished in SF1 and 2 (P < 0.05). The expression levels of gap-junction genes showed dramatic pre- and post-thawing fluctuations in all groups. After culture, estradiol in SF3 was significantly higher than SF1 and 2 (P < 0.05). In addition, progesterone in SF3 was similar to control but significantly lower in SF1 and 2 (P < 0.05). In conclusion, all SFs showed advantages and disadvantages, and the follicular quality and its function depend on the type of cryoprotectant and the speed of thawing. The effects of freezing/thawing continue to appear during the seven days of culture. According to the results of this study, SF3 seems to be more promising in keeping the follicles functional and safe from cell damage during culture.
Collapse
Affiliation(s)
- Fateme Hajati
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|