1
|
Gu M, Fang J, Shao Z, Yu H, Guo S, Gao Y, He X, Xu Y, Lv M. Association of FOXL2 and ERCC6 variants with premature ovarian insufficiency and their potential use in clinical IVF guidance. Gene 2025; 933:148946. [PMID: 39277148 DOI: 10.1016/j.gene.2024.148946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Premature ovarian insufficiency (POI) is the main cause of infertility in women. Some cases of POI are thought to be caused by genetic defects and the clinical outcomes of these patients are unknown. Here, we performed whole-exome sequencing of the peripheral blood of a cohort of 55 subjects with POI and identified one heterozygous missense variant in FOXL2 (c.1045G>C; p.Arg349Gly) and two heterozygous missense variants in ERCC6 (c.379G>A; p.Val127Ile and c.4223A>C; p.Glu1408 Ala) in four POI patients. All of these heterozygous mutations were predicted to be deleterious and were parentally inherited from their heterozygous fathers. The mRNA and protein expression of FOXL2 and ERCC6 were absent or decreased in the patients. The patients carrying the variants of FOXL2 (c.1045G>C; p.Arg349Gly) and ERCC6 (c.379G>A; p.Val127Ile) failed to conceive in two and four assisted reproductive cycles, respectively. Another patient and her sister carrying the ERCC6 (c.4223A>C; p.Glu1408 Ala) variant achieved good clinical outcomes after assisted reproductive therapy. Our findings support the possible roles of FOXL2 and ERCC6 in POI and might contribute to the genetic counseling of POI patients.
Collapse
Affiliation(s)
- Meng Gu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiajun Fang
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Zhongmei Shao
- Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230012, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Senchao Guo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Tang S, Guo T, Song C, Wang L, Zhang J, Rajkovic A, Lin X, Chen S, Liu Y, Tian W, Wu B, Wang S, Wang W, Lai Y, Wang A, Xu S, Jin L, Ke H, Zhao S, Li Y, Qin Y, Zhang F, Chen ZJ. MGA loss-of-function variants cause premature ovarian insufficiency. J Clin Invest 2024; 134:e183758. [PMID: 39545409 PMCID: PMC11563689 DOI: 10.1172/jci183758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
Although premature ovarian insufficiency (POI), a common cause of female infertility and subfertility, has a well-established hereditary component, the genetic factors currently implicated in POI account for only a limited proportion of cases. Here, using an exome-wide, gene-based case-control analysis in a discovery cohort comprising 1,027 POI cases and 2,733 ethnically matched women controls from China, we found that heterozygous loss-of-function (LoF) variants of MAX dimerization protein (MGA) were significantly enriched in the discovery cohort, accounting for 2.6% of POI cases, while no MGA LoF variants were found in the matched control females. Further exome screening was conducted in 4 additional POI cohorts (2 from China and 2 from the United States) for replication studies, and we identified heterozygous MGA LoF variants in 1.0%, 1.4%, 1.0%, and 1.0% of POI cases, respectively. Overall, a total of 37 distinct heterozygous MGA LoF variants were discovered in 38 POI cases, accounting for approximately 2.0% of the total 1,910 POI cases analyzed in this study. Accordingly, Mga+/- female mice were subfertile, exhibiting shorter reproductive lifespan and decreased follicle number compared with WT, mimicking the observed phenotype in humans. Our findings highlight the essential role of MGA deficiency for impaired female reproductive ability.
Collapse
Affiliation(s)
- Shuyan Tang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Ting Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, China
| | - Chengcheng Song
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aleksandar Rajkovic
- Department of Pathology, Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Xiaoqi Lin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujun Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center and
| | - Weidong Tian
- School of Life Sciences, Fudan University, Shanghai, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuhua Xu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center and
- School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center and
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hanni Ke
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center and
- Shanghai Key Laboratory of Embryo Original Diseases, Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (no. 2021RU001), Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
3
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
4
|
Ding X, Gong X, Fan Y, Cao J, Zhao J, Zhang Y, Wang X, Meng K. DNA double-strand break genetic variants in patients with premature ovarian insufficiency. J Ovarian Res 2023; 16:135. [PMID: 37430352 DOI: 10.1186/s13048-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yingying Fan
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Huang TH, Chen FR, Zhang YN, Chen SQ, Long FY, Wei JJ, Zhang K, Zeng JZ, Zhu QY, Li-Ling J, Gong Y. Decreased GDF9 and BMP15 in follicle fluid and granulosa cells and outcomes of IVF-ET among young patients with low prognosis. J Assist Reprod Genet 2023; 40:567-576. [PMID: 36689045 PMCID: PMC10033789 DOI: 10.1007/s10815-023-02723-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To analyze the level of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in follicle fluid (FF) and granulosa cells (GCs) derived from young patients with low prognosis for in vitro fertilization and embryo transfer (IVF-ET) treatment. METHODS A prospective cohort study was carried out by enrolling 52 young patients with low prognosis according to the POSEIDON classification group 3 (low prognosis group) and 51 young patients with normal ovarian reserve (control group). The concentration of the GDF9 and BMP15 proteins in FF was determined by enzyme-linked immunosorbent assay. The mRNA level of the GDF9 and BMP15 in the GCs was measured by quantitative real-time PCR. RESULTS The concentration of GDF9 (1026.72 ± 159.12 pg/mL vs. 1298.06 ± 185.41 pg/mL) and BMP15 (685.23 ± 143.91 pg/mL vs. 794.37 ± 81.79 pg/mL) in FF and the mRNA level of GDF9 and BMP15 in the GCs and the live birth rate per treatment cycle started (30.77% vs. 50.98%) and oocytes retrieved (4.25 ± 1.91 vs.12.04 ± 4.24) were significantly lower, whereas the canceled cycle rate was significantly higher (9.62% vs. 0) in the low prognosis group compared with the control group (P < 0.05). The expression of GDF9 and BMP15 in the ovary was positively correlated with live birth (P < 0.05). CONCLUSION The expression of GDF9 and BMP15 in the ovary was decreased in young patients with low prognosis accompanied by a poorer outcome of IVF-ET treatment. TRIAL REGISTRATION ChiCTR1800016107 (Chinese Clinical Trial Registry), May 11, 2018. ( http://www.chictr.org.cn/edit.aspx?pid=27216&htm=4 ).
Collapse
Affiliation(s)
- Tian-Hong Huang
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Fu-Rui Chen
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Ya-Nan Zhang
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Shi-Qi Chen
- Women and Children's Health Management Department, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Fang-Yi Long
- Department of Pharmacy, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Jia-Jing Wei
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Kun Zhang
- Department of Genetics, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jiu-Zhi Zeng
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Qiao-Ying Zhu
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yan Gong
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China.
| |
Collapse
|
7
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
8
|
Meng T, Zhang W, Zhang R, Li J, Gao Y, Qin Y, Jiao X. Ovarian Reserve and ART Outcomes in Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Patients With FOXL2 Mutations. Front Endocrinol (Lausanne) 2022; 13:829153. [PMID: 35574016 PMCID: PMC9097277 DOI: 10.3389/fendo.2022.829153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To characterize the status of ovarian reserve and ART outcomes in BPES women and provide informative reference for clinical diagnosis and treatment. Methods Twenty-one women with BPES were screened for mutations in the FOXL2 gene and underwent assisted reproductive technology (ART) treatment. Indicators for ovarian reserve and ART outcomes were compared between patients with and without FOXL2 mutations. Additionally, ART outcomes were compared among patients with different subtypes of FOXL2 mutations. Results A total of 13 distinct heterozygous variants in the FOXL2 gene were identified in 80.95% of BPES women, including 4 novel mutations with plausible pathogenicity (c.173_175dup, c.481C>T, c.576del and c.675_714del). Compared to non-mutation group, patients with FOXL2 mutations had elevated levels of FSH (P=0.007), decreased AMH levels (P=0.012) and less AFC (P=0.015). They also had worse ART outcomes with large amount of Gn dosage (P=0.008), fewer oocytes (P=0.001), Day3 good quality embryos (P=0.001) and good quality blastocysts (P=0.037), and a higher cancellation rate (P=0.272). High heterogeneity of ART outcomes existed in BPES patients with different FOXL2 mutation types. Conclusions BPES patients with FOXL2 mutations had diminished ovarian reserve and adverse ART outcomes. The genotype-reproductive phenotype correlations were highly heterogeneous and cannot be generalized. Genetic counseling for fertility planning and preimplantation or prenatal genetic diagnosis to reduce offspring inheritance are recommended.
Collapse
Affiliation(s)
- Tingting Meng
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Wenzhe Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Rongrong Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jie Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Jinan, China
| |
Collapse
|
9
|
Turkyilmaz A, Alavanda C, Ates EA, Geckinli BB, Polat H, Gokcu M, Karakaya T, Cebi AH, Soylemez MA, Guney Aİ, Ata P, Arman A. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet 2022; 39:695-710. [PMID: 35066699 PMCID: PMC8995228 DOI: 10.1007/s10815-022-02408-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a heterogeneous disorder characterized by the cessation of menstrual cycles before the age of 40 years due to the depletion or dysfunction of the ovarian follicles. POI is a highly heterogeneous disease in terms of etiology. The aim of this study is to reveal the genetic etiology in POI patients. METHODS A total of 35 patients (mean age: 27.2 years) from 28 different families diagnosed with POI were included in the study. Karyotype, FMR1 premutation analysis, single nucleotide polymorphism (SNP) array, and whole-exome sequencing (WES) were conducted to determine the genetic etiology of patients. RESULTS A total of 35 patients with POI were first evaluated by karyotype analysis, and chromosomal anomaly was detected in three (8.5%) and FMR1 premutation was detected in six patients (17%) from two different families. A total of 29 patients without FMR1 premutation were included in the SNP array analysis, and one patient had a 337-kb deletion in the chromosome 6q26 region including PARK2 gene, which was thought to be associated with POI. Twenty-nine cases included in SNP array analysis were evaluated simultaneously with WES analysis, and genetic variant was detected in 55.1% (16/29). CONCLUSION In the present study, rare novel variants were identified in genes known to be associated with POI, which contribute to the mutation spectrum. The effects of detected novel genes and variations on different pathways such as gonadal development, meiosis and DNA repair, or metabolism need to be investigated by experimental studies. Molecular etiology allows accurate genetic counseling to the patient and family as well as fertility planning.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Ceren Alavanda
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- grid.414850.c0000 0004 0642 8921Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Bilgen Bilge Geckinli
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Hamza Polat
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mehmet Gokcu
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Taner Karakaya
- Department of Medical Genetics, Isparta City Hospital, Isparta, Turkey
| | - Alper Han Cebi
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ali Soylemez
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet İlter Guney
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Pinar Ata
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Arman
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
10
|
Searching for female reproductive aging and longevity biomarkers. Aging (Albany NY) 2021; 13:16873-16894. [PMID: 34156973 PMCID: PMC8266318 DOI: 10.18632/aging.203206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Female reproductive aging is, in a way, a biological phenomenon that develops along canonical molecular pathways; however, it has particular features. Recent studies revealed complexity of the interconnections between reproductive aging and aging of other systems, and even suggested a cause-effect uncertainty between them. It was also shown that reproductive aging can impact aging processes in an organism at the level of cells, tissues, organs, and systems. Women at the end of their reproductive lives are characterized by the accelerated incidence of age-related diseases. Timing of the onset of menarche and menopause and variability in the duration of reproductive life carry a latent social risk: not having enough information about the reproductive potential, women keep on postponing childbirth. Identification and use of the most accurate and sensitive aging biomarkers enable the prediction of menopause timing and quantification of the true biological and reproductive ages of an organism. We discuss current views on reproductive aging and peculiarities of using available biomarkers of aging. We also consider latest advances in the search for potential genetic markers of reproductive aging. Finally, we posit the importance of determining the female biological age and highlight potential research directions in this area.
Collapse
|